

Deliverable D 11.5 The platform for

Monte-Carlo simulations

WP11 – JRA05 – SiNuRSE

1 / 6

D 11.5: The platform for Monte-Carlo simulations

Task 2 of the SiNuRSE Joint Research Action deals with the development of a virtual
Monte-Carlo platform, a framework where the nuclear physics community can perform
simulation and data analysis. The activities involved in this task are geared to serve the
development, exemplification, documentation and dissemination of a simulation and
analysis tool for the whole community.

The adopted solution, the EnsarRoot framework for simulation and data analysis for
ENSAR-SiNuRSE, uses the VMC facilities in ROOT to interface with particle tracking
engines, together with the complete ROOT libraries for data analysis and visualization.
In this report, we summarize the main characteristics of the framework, including the
arguments leading to the selection of the framework, the improvements done for the
parameters database management, and some aspects to the detector integration and
quality assessment.

The EnsarRoot code is available for downloading (http://igfae.usc.es/~sinurse/)
including installation guides and documentation.

EnsarRoot: a framework for simulation and analysis for SiNuRSE

EnsarRoot, the framework for simulation and data analysis for ENSAR-SiNuRSE, is based
on the FairRoot framework (http://fairroot.gsi.de/) which is fully based on the ROOT1
code. The user can create simulated data and perform analysis within the same
framework. Moreover, Geant3 and Geant42

 transport engines are supported; however,
the user code that creates simulated data does not depend on a particular Monte Carlo
engine.

The EnsarRoot framework delivers base classes which enable the users to construct
their detectors and analysis tasks in a simple way. The code derives from the general
classes of FairRoot, adding and specifying the geometrical, physical description and
response of the detectors of selected example setups, database support, event
generators for the reactions of interest and analysis and event visualization tools. It
expands the framework behavior by including a dedicated physics list for low-energy
neutrons, gamma interactions and nuclear fragment transport while supporting
database connectivity to handle multiple experimental setups.

1 Available at: http://root.cern.ch
2 Available at: http://geant4.cern.ch/

http://igfae.usc.es/~sinurse/�
http://fairroot.gsi.de/�

Deliverable D 11.5 The platform for

Monte-Carlo simulations

WP11 – JRA05 – SiNuRSE

2 / 6

The selection of the FairRoot framework to derive EnsarRoot has been the result of a
careful evaluation, taking into account that the FairRoot base library provides:

● A common data structure for simulation and analysis based on efficient and well-
tested data arrangements (TClonesArray, TFile, ...) from the ROOT system.

● A common geometry description based on the ROOT Geometry Modeller.
● An interface to different Monte Carlo engines (Geant3, Geant4, …) using the ROOT

Virtual Monte Carlo package.
● Detectors base class handling initialization, geometry construction, hit

processing, event loop management, tasks management, ...
● Geometry input readers supporting ASCII, ROOT and STEP (CAD) formats.
● A generic event display based on Eve and Geane.
● A Runtime database for geometry and parameters handling.
● A Fast simulation base services based on Virtual Monte Carlo and the ROOT Tasks

library.
● ROOT macro commands for steering the simulation and the analysis.
● ROOT macro commands for configuring the different Monte Carlo engines.
● Developers tools: git support, CMake employed as a flexible build system for

different platforms, CDash and CTest for Code Quality Assessment...
● Support for grid computing using the Alien Grid Middleware.

The EnsarRoot code derives from the general classes of FairRoot, expanding their
behavior with elements which are relevant for the experiments performed in our
community and examples and templates of different detectors and setups which could
serve as a base for the development of their own detector arrangements. It extends the
framework behavior by adding a dedicated physics list for low-energy neutrons, gamma
interactions and nuclear fragment transport while supporting the new parameters
database to handle multiple experimental setups and different databases through SQL.

The present implementation of EnsarRoot contains examples for scintillating detectors
(scintillator and scitof modules), full calorimetry (CALIFA-R3B in calo module), silicon
detectors (Silicon module), an RPC-based cosmic rays detector (tragaldabas module),
and a setup for ring experiments (E105 module). More information as well as how-to
documents to implement new setups is also available (http://igfae.usc.es/~sinurse/).

Parameter database using "FairBase" framework

Within the FairRoot framework, data IO as well as parameter handling and database
connections are handled by the framework. In this project, the database interface and
parameter handling interfaces of the framework are extended and modified in such a
way that the detector parameters could be written to and read from an SQL database.
For this purpose a number of new interfaces, library functions and algorithms are

http://igfae.usc.es/~sinurse/�

Deliverable D 11.5 The platform for

Monte-Carlo simulations

WP11 – JRA05 – SiNuRSE

3 / 6

implemented and integrated inside the framework. Finally, the simulator code written
for ENSAR E105 experiment is adapted as an example to demonstrate the functionality
of this framework and to serve as a starting point for the future development of new
simulation, and data-processing programs.

We have extended the FairRoot framework to provide database communication via the
ROOT TSQL interface. This ROOT facility provides the opportunity to use different
DataBase Management Systems (DBMS) without changing the user code and writing
DBMS dependent programs. At this moment MySQL3, Postgresql4 and Oracle5

 DBMS are
supported by TSQL interface in different states. For the current implementation, we
have chosen to use MySQL as the testing and development platform. The reason is that
MySQL is available for different operating systems and is quite easy to install and
deploy. The older versions of FairRoot framework could write into and read from
parameter files, both in ASCII and root format. In order to support SQL based IO, a new
interface has been designed and implemented.

The design of the interface is done in a way that the details of the communication and
the read/write operations are fully hidden from the end user. In the case of a detector
code developer, it means in practice that the parameter handling code for each detector
or sub-detector needs to be extended by a small number of procedures in order to use
the current SQL IO facilities. These are procedures/functions to describe SQL structure
of the parameter container, setting (Filling), storing and fetching the container data from
the database.

At this moment, the SQL IO interface supports basic parameter types such as integer,
float, double and character. It is planned to extend the functionality to store even
complex data types in the form of Binary Large OBjects (BLOB). The latter could be
useful for storing an array of data or even histograms. In case of an end user, one can
continue using the same macros and programs for storing the data into or fetching the
data from a database; one simply needs to specify the address of the database instead of
a parameter file name. In the latter case, one needs to have read and/or write access to
the chosen database. Furthermore, the current implementation supports multiple
databases from which the parameters can be fetched or they can be written to. These
may be specified by a number of shell environmental variables.

For further information and details of the implementation, we refer to the FairRoot
documentation and source files available at GSI web and source repository6

3 Available at:

.

http://www.mysql.com/
4 Available at: http://www.postgresql.org/
5 Available at: http://www.oracle.com
6 GSI Helmholtzzentrum für Schwerionenforschung GmbH. http://www.gsi.de
https://github.com/FairRootGroup/FairSoft

http://www.mysql.com/�
http://www.mysql.com/�
http://www.gsi.de/�
http://www.gsi.de/�

Deliverable D 11.5 The platform for

Monte-Carlo simulations

WP11 – JRA05 – SiNuRSE

4 / 6

In order to provide a working example we have chosen to adapt the EnsarE105 (E105
was a ring experiment recently performed at GSI) simulator in such a way that it is
capable of using the FairRoot SQL IO facility. This implementation, in combination with
the other examples provided in the "fairbase" implementation, could be used as a
starting point for new data production and analysis chain implementation. The E105
source directory contains the detector geometries, event generator and example macros.
For more information, see the EnsarRoot documentation.

As future work, we point out a number of features which are not included in the
framework yet but could be possible extensions of the current implementation7

.

● In the current state, the FairRoot database interface is designed to handle
primary data types like integer, float, double and characters. It is planned and
desirable to extend the interface to handle more complex types such as arrays of
a primary type.

● Database replication facilities. To replicate data consistently and maintain the
data integrity across different servers and client applications.

● A full object decomposer tool chain in the data-handling interface to store and
retrieve more complex objects by means of their members.

● A complete SQL translator between different SQL versions will help to create
more efficient and optimized queries.

● A uniform administrator tool set via FairBase tool.

Detector integration and quality assessment

As discussed in the introduction, the general framework EnsarRoot contains modules
which can be used as examples or test cases, or taken as templates for the development
of different setups.

-Geometry, hits and digitization developments:
As a starting point, a novice module, we have chosen two template detectors: a
scintillator and a silicon detectors (template_scintillator and template_silicon modules in
EnsarRoot). The geometry is developed following the TGeo geometrical modeller (a
combination between a GEANT-like scheme and a normal CSG binary tree at the level of
shapes) of ROOT package. The mother/daughter concept is preserved on all detector
geometry descriptions. Practically, every geometry defined in GEANT style can be
included or implemented in the framework. TGeoManager is responsible for building
and tracking geometries. It contains lists of media, materials, transformations, shapes
and volumes. Logical nodes (positioned volumes) are created and destroyed by the

7 For the most recent status and plans, please contact the FairRoot developers.

Deliverable D 11.5 The platform for

Monte-Carlo simulations

WP11 – JRA05 – SiNuRSE

5 / 6

TGeoVolume class. They are constructed following general rules: volumes need media
and shapes in order to be created, both container and volumes must be created before
linking them together, and the relative transformation matrix must be provided. The
documentation shows how to construct a detector from each template type.
The MonteCarlo tracker interactions can be accessed through a class collecting the hits
produced (using the class TClonesArray from ROOT). The contents of the array, the
collection of interactions, are filled by proper methods in the template detectors class.

Next, detector digits, essentially a hit in the sensitive detector storing the main detection
characteristics (energy, time, …), are produced by a set of tasks which run on an event-
by-event basis. The resulting collection of the digits, stored as before in TClonesArray
structures, can be analyzed by additional tasks up to any level of elaboration. The
template detectors also include container parameter classes (EnsarScintillatorContFact,
EnsarScintillatorGeoPar, EnsarScintillatorDigiPar, ...) which could control the
parameters in the geometrical construction, digitization, calibrations, ...

-Event display and detector display examples for different detectors:
The purpose of this task was, on the one hand, to identify the general elements and
construct classes for events and hits visualization and functions for specific
requirements (possibility for cuts and selections) and, on the other hand, to develop the
components for construction of display examples. The event display would serve not
only in the visualization of the reconstruction process (showing hits and times on the
raw level and relating it to the particle hits during the reconstruction, on an event-by-
event basis) but also during the online event display.

The Visualization Classes that we have proposed to develop allow to manage the
visualization of geometries, trajectories and hits. These classes can have multiple uses:
as elementary blocks for visualization tasks with simple complexity, as reference
classes for visualization classes with more advanced complexity, or simply as examples
of visualization usage. Demonstration classes for the event viewers in the CALIFA and
the template scintillator and silicon detectors are included in EnsarRoot.

The objectoriented classes for visualization were developed taking into account that
existing graphical displays already contain much of the basic functionality that we need
without much additional coding: rotate and zoom; click and inspect objects on canvas,
display using OpenGL8

, etc. However, documentation of these classes is requested since
all the existing classes are very poorly documented. Construction of display classes was
done following the next steps:

1. Identification of common elements of event display with other systems (e.g.
monitoring and analysis systems) in order to avoid duplication of effort. The

8 https://www.opengl.org/

Deliverable D 11.5 The platform for

Monte-Carlo simulations

WP11 – JRA05 – SiNuRSE

6 / 6

ROOT class TEveGeoNode provides a simple and natural means of building
detector geometry and placing hits within that geometry.

2. Construction of generic graphics classes for detector and event objects.
3. Development of components for graphical user interfaces for archetype

detectors.
4. Documenting classes for different archetypal detectors (CALIFA, scintillators and

silicon in particular) which demonstrate the usage of Event Display classes.

Quality Monitoring:
Quality Monitoring (QM) is an important aspect of many Nuclear Physics experiments,
where the detectors employed are increasingly sophisticated devices. Developing an
integrated system for monitoring detectors key parameters has become an important
task. The QM framework is built for the purpose of checking the quality of the data at
different levels of data acquisition (data from Monte Carlo simulations and real
experimental data).

The QM is performed in three steps:

● At the first step, QM data objects for a given level and a given detector are stored
in a TList type class (EnsarQM). Here, the global QM class tree structure –
EnsarQM.cxx – will have a detector list and output file (QM.root).

● For each detector class, build quality-control histograms classes are created (a
template for a scintillator detector and a silicon detector in this case). At this step,
QM data objects derived from the ROOT TH1 histogram class are built (classes
EnsarScintilatorQMData.cxx and EnsarSiliconQMData.cxx).

● The last step is to build a checking class for the different QM parameters with
user-defined data.

The structure of QM classes has been completed. Integration of QM in EnsarRoot
repository is on the way.

	D 11.5: The platform for Monte-Carlo simulations
	EnsarRoot: a framework for simulation and analysis for SiNuRSE
	Parameter database using "FairBase" framework
	Detector integration and quality assessment

