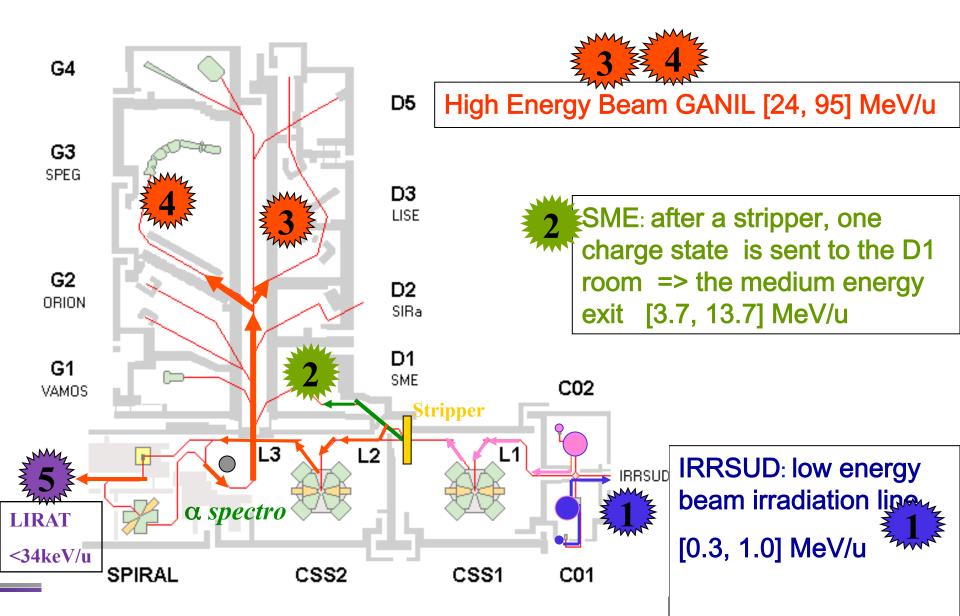
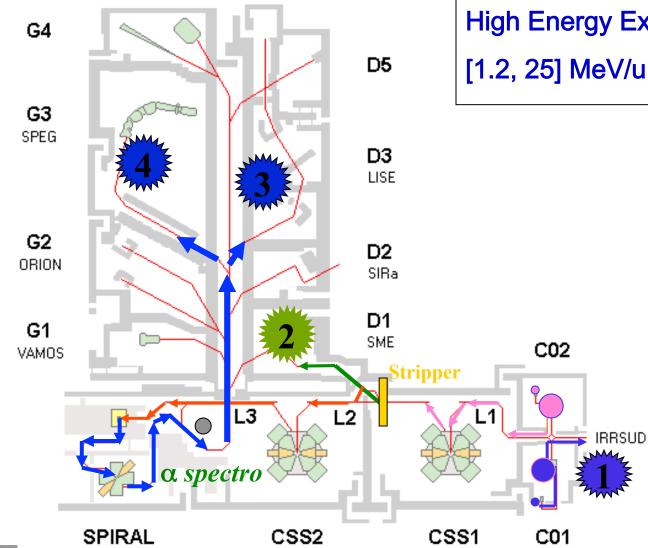


HIGH INTENSITY ION BEAMS AT GANIL



- The first beam of GANIL was sent to an experimental room in 1983.
- Since then, the variety (116) and intensity of the ion beams available always increased.
- Progress in the source domain make possible to potentially transport of kW beams.
- The cyclotrons and the beamlines had to be upgraded to handle such a new constraint.


Multi-Beam Operating Mode: 5 experiments in parallel with <u>stable beams</u>

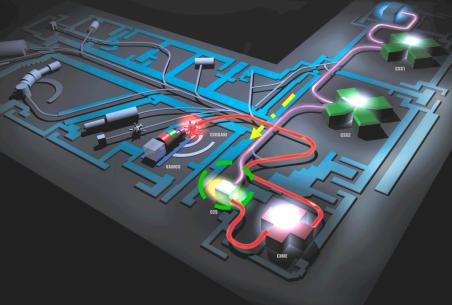
SPIRAL1 operating mode: 4 experiments in parallel

High Energy Exotic Beam [1.2, 25] MeV/u

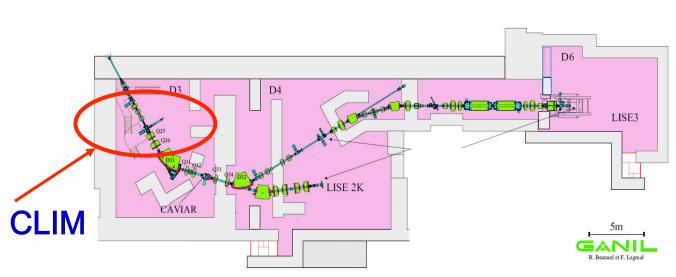
Radioactive ion beams with «ISOL» method since 2001 (W<25MeV/u)

Acceleration and Purification in the compact cyclotron CIME

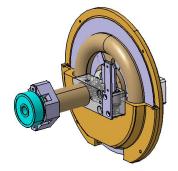
ECOS facility meeting, may 16th 2013 – GANIL - F. Chautard

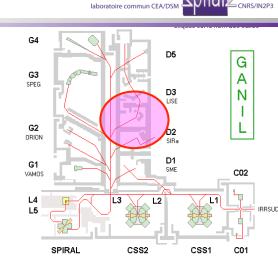

GANIL heavy ion beams up to 95 MeV/u onto a thick carbon target

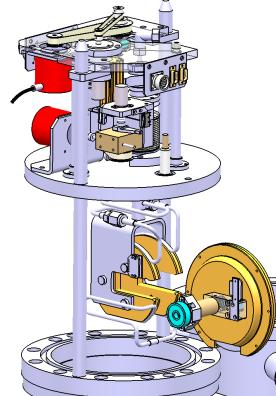
> radioactive atoms


SPIRAL: HISTORY

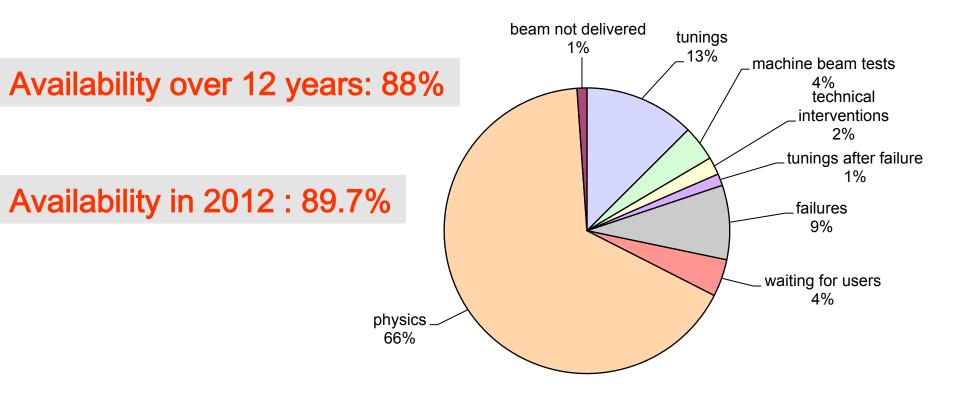

- In 2001, the first exotic beam of SPIRAL1 was produced with the existing cyclotron used as a driver.
- The exotic ion production was then depending on the target power resistance and the increase of the primary beam power.
- This leading to the developments of 3 kW target of SPIRAL1 and meanwhile increase the primary beam power within the <u>safety rules (shielding limit)</u>:


< 6kW or 2 10¹³ pps

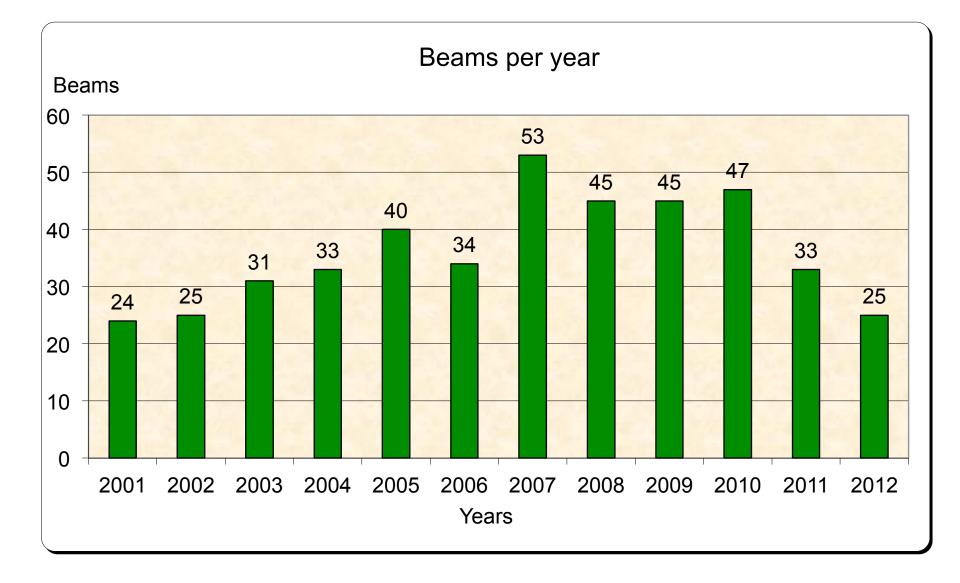

Radioactive ion beams with «In Flight» method (W<95 MeV/u)



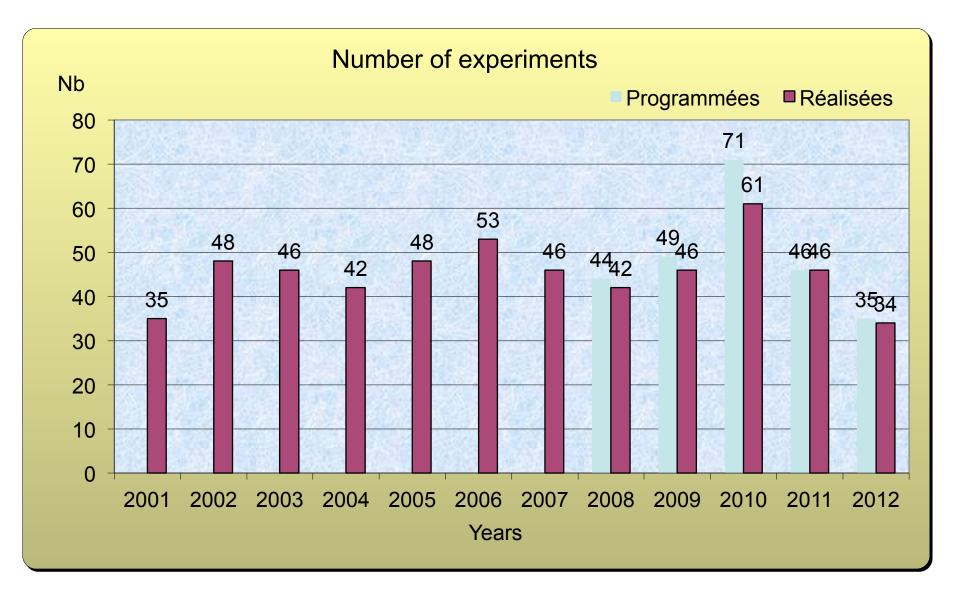
2kW beam onto rotating target


Multi-beam operating mode: Beam schedule

Date	hour	C01	C02	CSS1, CSS2	CIME	SME	Auxiliary beam
	6h00			36Ar18+			
Saturday	10h00			95 MeV/A			
25-Sep	14h00						
	18h00		36Ar	Test SPR D1			
	22h00		95 MeV/A	P832			
	2h00			(Testard)			E587 S
	6h00	Change of		D1			(I. Martel)
Sunday	10h00	source chamber		2 U T			, í
26-Sep	14h00			P858			
	18h00			(Fourdrin)			
	22h00			D1			
	2h00	Outgassing					
	6h00		36Ar	P858			
Monday	10h00	Tuning ECR	95 MeV/A	(Fourdrin)			E587 S
27-Sep	14h00	13C3+		D1	1602+		(I. Martel)
21.000	18h00	Tuning C0		BUFFER	2.02 MeV/A		(
	22h00	13C3+		Tuning Z	Tuning Z		
1	2h00	1000		runnig 2	E587 S		
	6h00			13C6+	(I. Martel)		
Tuesday	10h00		Tuning ECR4	75 MeV/A	G21		
28-Sep	14h00		58Ni11+	To merin	021		
20-3ep	18h00		VOINT !!		8He1+	_	
	22h00	13C			2 MeV/A		
	2h00	75 MeV/A			2e5 pps		
	6h00	75 WEVA			zeo pps		
Wednesday	10h00		Tuning C0	•	IBE	-	
	14h00		58Ni11+ 0.8 MeV/A		IDC		
29-Sep	18h00		SOIVITIT U.O IVIEVIA				
	22h00				E587 S	SME	
	22n00					SIVIE	
	6h00				(I. Martel) G21		
T I I	10h00				9 UT		
Thursday			IDDCUD		901		
30-Sep	14h00		IRRSUD				
	18h00						
	22h00			DE 111			
	2h00			BEAM			
	6h00			ON SPIRAL			
Friday	10h00			TARGET			
1-Oct	14h00						
	18h00						
	22h00						


ECOS facility meeting, may 16th 2013 - GANIL - F. Chautard

Running Statistics 2001-2012

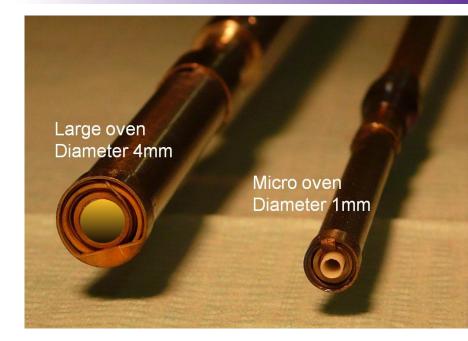

GANIL per year: 30 weeks / 4 periods: 5000h of operating time. Leading to 9000h of beam time for users (multi-beam effect)

From 2001 to 2012

Intense beams

2.10¹³pps Safety limitation reached

Possible improvement


Beam	lmax [μAe]	[pps] <2 10 ¹³	Emax [MeV/A]	Pmax [W] <6kW	Used with Spiral
¹² C ⁶⁺	18	1.9 10 ¹³	95	3 200	
¹³ C ⁶⁺	18	2. 10 ¹³	80	3 000	X
¹⁴ N ⁷⁺	15	1.4 10 ¹³	95	3 000	
¹⁶ O ⁸⁺	16	10 ¹³	95	3 000	X
¹⁸ O ⁸⁺	17	10 ¹³	76	3 000	X
²⁰ Ne ¹⁰⁺	17	10 ¹³	95	3 000	X
²² Ne ¹⁰⁺	17	1013	79	3 000	
³⁶ S ¹⁶⁺	11	4.3 10 ¹²	77.5	1900	X
³⁶ Ar ¹⁸⁺	24	8.3 10 ¹²	95	4600	X
⁴⁸ Ca ¹⁹⁺	4.5	1.5 10 ¹²	60	700	X
⁵⁸ Ni ²⁶⁺	5	1.2 10 ¹²	74.5	860	
⁷⁶ Ge ³⁰⁺	3.5	0.7 10 ¹²	61	500	
⁷⁸⁻⁸⁶ Kr ³⁴⁺	7	1.3 10 ¹²	70	1200	X
¹²⁴ Xe ⁴⁶⁺	1.8	2.6 101	49.6	300	

http://pro.ganil-spiral2.eu/users-guide/accelerators/available-stable-ion-beams-at-ganil/view

R&D: Intense Primary beams

It goes with an improvement of the source oven for the metallic ion production.

 First, a modified version of the existing micro-oven at high temperature (1700°C max) to a higher capacity oven but at a lower average temperature (1100°C max).

- Second, build a large capacity and high temperature oven.
- Above the 1700°C temperature limit, development with induction • Those developments are coherent oven is foreseen.

with the beam needs expressed by the SPIRAL2 project for the production of 48Ca¹⁶⁺ and 58Ni¹⁹⁺.

ECOS facility meeting, may 16th 2013 - GANIL - F. Chautard

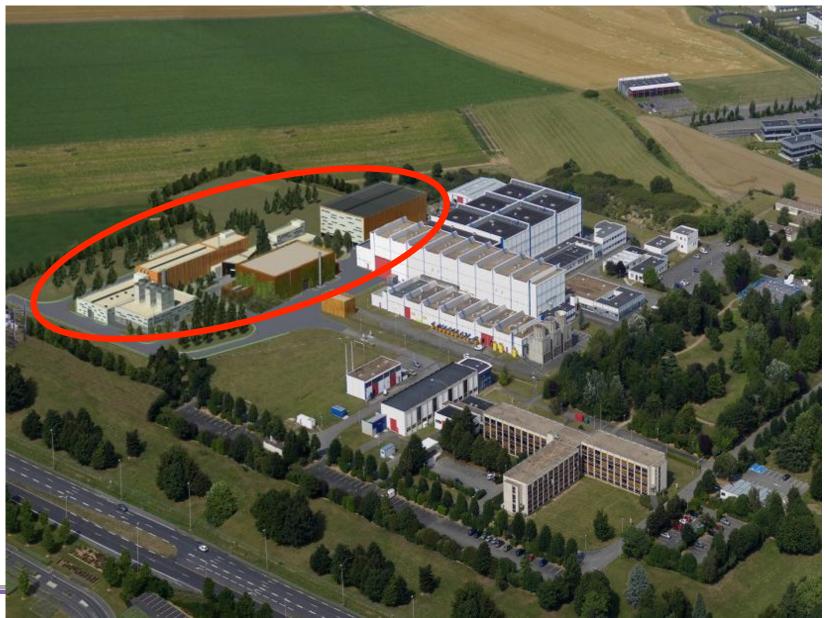
R&D ISOL Production Limitation with the actual Nanogan 3 source

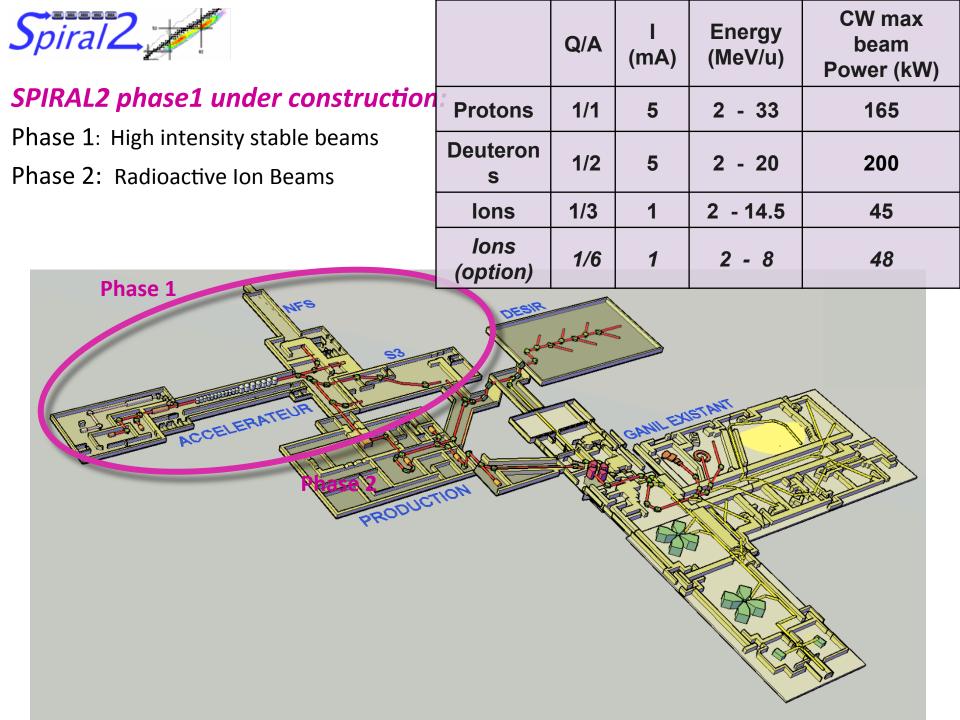
1 H														A	ctu	al	2 He
3	4											5	6	7	8	9	10
Li	Be											В	0	N	0	F	Ne
11	12											13	14	15	10	17	18
Na	Mg											AI	Si	Р	S	CI	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Са	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
55	56	*	72	73	74	75	76	77	78	79	80	81	82	83	84	85	36
Cs	Ва		Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
87	88	**	104	105	106	107	108	109	110	111	112	113	114	115	116	(117)	118
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup	Uuh	(Uus)	Uuo

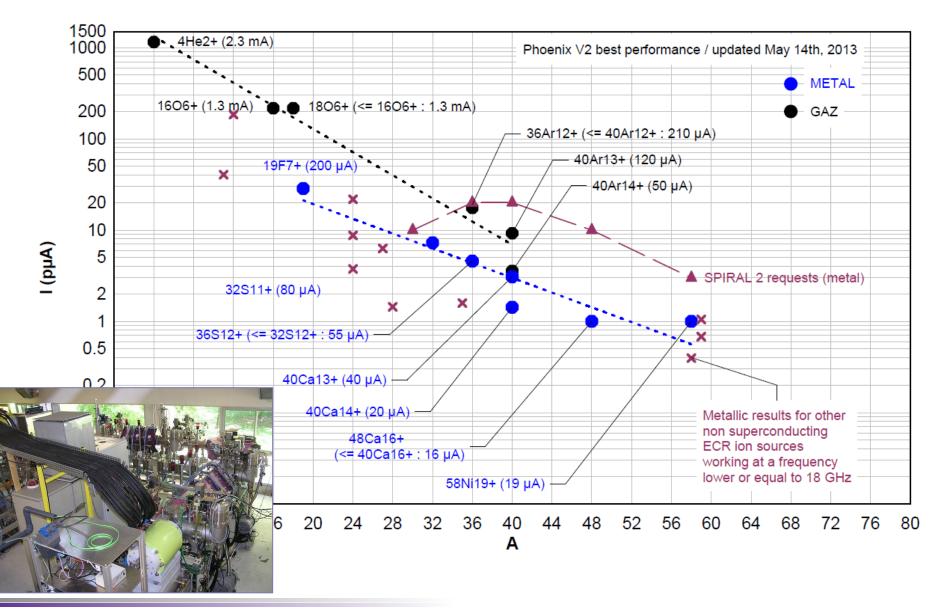
- GANIL group project constituted
- Overview of source developments for SPIRAL1: done

Possible New Beams from graphite targets with SPIRAL1 design compatible sources

1			urta												Nan	an	2	
н			onis	atio	on													Не
3	4	4											5	6	7	8	9	10
Li	В	le				F	FEB	ΙΔΠ					В	С	N	0	F	Ne
11	1	2											13	14	15	16	17	18
Na	N	1g											AI	Si	P	S	CI	Ar
19	2	0	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	C	2	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	3	8	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
R	S	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
55	5	6	*	72	73	74	75	76	77	78	79	80	81	82	8		RHD	
Cs	В	la		Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	В			
87	8	8	**	104	105	106	107	108	109			112	113	114	115	116	(117)	118
Fr	R	la		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup	Uuh	(Uus)	Uuo

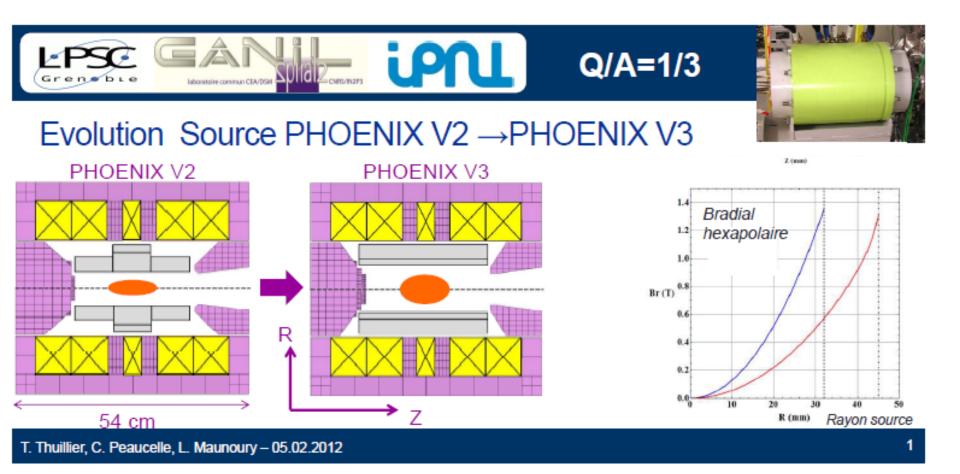

Mass limited to <~90 for various technical reasons, can be extended in the future.


The developments should be driven by physics cases (Lol)



SPIRAL2

Measured figures for the Phoenix V2 source


Shiidi

CNRS/IN2P3

aboratoire commun CEA/DSM

R&D: Intense Primary beams SPIRAL2

✓ Beam tests fall 2013

GANIL potentiality

44 weeks for SPIRAL2 and 36 weeks for GANIL a year are foreseen

SPIRAL 2			Jan.			Feb.			Ма	arch	ı	April			Мау				June				Ju	ly		Aug.			S	sept			Oct	t.		No	»v.	Τ	Dec.		
LINAG																																									
Maintenance																																							\Box		
AEL																																									
OTHER TARGETS																																									
Ucx target				Π					Π						Π							Π																	Π		
	GANIL exp. area								Π									Π									Τ								Т					T	
	DESIR			\square			Г		Π		Г	Π		Τ				Π							П			Π			Π								П	Т	
GANIL/SPIRAL 1																																							-	Т	
GANIL				Π																														Π						T	
Maintenance				Π					Π	Т	Г	Π						Π				Π		Т	Π				Т			Τ			Т				П		
																																						1	<u> </u>		
GANIL EXPERIMENTAL A	REA			Π					Π			Π		Т											Π													Г	П	T	
CASEMATE SPIRAL1				Π														Π				Π																	П	T	
	GANIL exp. area			П							Г	Π													Π	T	T	Π											П	T	
	LIRAT or DESIR								Π													Π			Π			П											П	Т	
CSS1 solo				$\uparrow \uparrow$						T								Π		╈				T	Π		T			╈	Π				ſ	Π	\square		Ħ		
SME				П					Π			Π			Π													Π											Π	T	
IRRSUD												Π															T	Г										T	Π		

Thank you for your attention

ECOS facility meeting, may 16th 2013 - GANIL - F. Chautard