The Jyväskylä Accelerator Laboratory

Pauli Heikkinen JYFL

ECOS, Orsay, May 16, 2013

Status

•

.

•

.

Current Nuclear Research Facilities in Europe

Department of Physics

(Old) experimental hall

Extension of the laboratory

K130 cyclotron

In the little

MCC30/15 cyclotron

Electron Linac for radiation damage tests

K130 Cyclotron

Monthly Use in 2012

JUROGAM HENDES APPLIED/T-LINE □ APPLIED/P-LINE APPLIED/A-LINE APPLIED/N-LINE BEAM DEVELOPING

K130 - Accelerated ions 1992 – 2013 (highest energy shown)

32 elements

₁H				
Ion	E (MeV)	E (MeV/u)	Comments	
Η-	62	62.1		
H+	80	80.0	Last used in 1995.	
d -	55	27.5		
d +	65	32.5		

₂ He			
Ion	E (MeV)	E (MeV/u)	Comments
3 He 2+	100	33.0	
4 He 2+	120	29.9	

D _a				
Ion	E (MeV)	E (MeV/u)	Comments	
12 C 5+	240	19.9		
13 C 5+	250	19.2		

		₇ N	
Ion	E (MeV)	E (MeV/u)	Comments
14 N 6+	310	22.1	
15 N 4+	300	19.9	

0 ₈			
Ion	E (MeV)	E (MeV/u)	Comments
16 O 7+	330	20.6	
18 O 5+		10.3	

		۶F	
Ion	E (MeV)	E (MeV/u)	Comments
19 F 4+	105	5.5	

10Ne			
Ion	E (MeV)	E (MeV/u)	Comments
20 Ne 8+	400	19.9	
22 Ne 6+	223	10.1	

		₁₂ Mg	
Ion	E (MeV)	E (MeV/u)	Comments
26 Mg 6+	140	5.4	

		₁₃ Al	
Ion	E (MeV)	E (MeV/u)	Comments
27 Al 6+	133	4.9	

		₁₄ Si	
Ion	E (MeV)	E (MeV/u)	Comments
28 Si 9+	353	12.6	
30 Si 7+	148	4.9	

₁₆ S				
lon	E (MeV)	E (MeV/u)	Comments	
32 S 9+	280	8.7		
33 S 5+	89	2.7		
34 S 7+	160	4.7		
36 S 8+	243	6.7		

₁₈ Ar				
Ion	E (MeV)	E (MeV/u)	Comments	
36 Ar 9+	230	6.4		
40 Ar 12+	451	11.2		

₂₅ Mn				
Ion	E (MeV)	E (MeV/u)	Comments	
55 Mn 12+	255	54.9		

₂₀ Ca				
lon	E (MeV)	E (MeV/u)	Comments	
40 Ca 9+	260	6.5		
42 Ca 9+	213	5.1		
44 Ca 9+	227	5.1		
48 Ca 10+	240	5.0		

₂₆ Fe				
Ion	E (MeV)	E (MeV/u)	Comments	
54 Fe 12+	315	5.8		
56 Fe 11+	278	5.0		
56 Fe 15+		9.3	Low intensity.	

	₂₈ Ni				
Ion		E (MeV)	E (MeV/u)	Comments	
58 Ni 12	2+	340	5.9		
60 Ni 1	3+	315	5.2		
61 Ni 1	3+	340	5.6		
64 Ni 14	4+	420	6.6		

₂₂ 11					
Ion	E (MeV)	E (MeV/u)	Comments		
46 Ti 9+	207	4.5			
47 Ti 9+	226	4.8			
48 Ti 11+	251	5.2			
49 Ti 10+	227	4.6			
50 Ti 11+	245	4.9			

₂₃ V				
Ion	E (MeV)	E (MeV/u)	Comments	
51 V 10+	232	4.5		

₂₄ Cr				
Ion	E (MeV)	E (MeV/u)	Comments	
52 Cr 10+	257	4.9		

29Cu				
lon	E (MeV)	E (MeV/u)	Comments	
63 Cu 13+	338	5.4		
65 Cu 15+	463	7.1		

₃₀ Zn				
Ion	E (MeV)	E (MeV/u)	Comments	
64 Zn 14+	378	5.9		
66 Zn 13+	295	4.5		

₃₂ Ge				
Ion	E (MeV)	E (MeV/u)	Comments	
72 Ge 12+	260	3.6		
74 Ge 13+	305	4.1		

_{зб} Кг				
Ion	E (MeV)	E (MeV/u)	Comments	
78 Kr 17+	450	5.8		
82 Kr 16+	362	4.4		
82 Kr 22+		9.3	Low intensity.	
83 Kr 16+	375	4.5		
84 Kr 20+	600	7.1		
84 Kr 22+	781	9.3	Low intensity.	
86 Kr 20+	600	7.0		

₃₈ Sr				
Ion	E (MeV)	E (MeV/u)	Comments	
84 Sr 16+	400	4.8		
86 Sr 17+	403	85.9		
88 Sr 16+	475	5.4		

39 Y				
Ion	E (MeV)	E (MeV/u)	Comments	
89 Y 23+	790	8.8		

₄₀ Zr					
Ion E (MeV)		E (MeV/u)	Comments		
90 Zr 17+	410	4.5			

₄₂ Mo				
Ion	E (MeV)	E (MeV/u)	Comments	
98 Mo 19+	490	5.0		

44Ru				
Ion	E (MeV)	E (MeV/u)	Comments	
102 Ru 19+	448	4.4		

47Ag				
Ion	E (MeV)	E (MeV/u)	Comments	
107 Ag 21+	487	4.5		

₅₃				
Ion	E (MeV)	E (MeV/u)	Comments	
127 23+	530	4.2		

₅₄ Xe					
Ion	E (MeV)	E (MeV/u)	Comments		
128 Xe 23+	525	4.1			
129 Xe 25+	129 Xe 25+ 600				
129 Xe 37+		7.4	Low intensity.		
130 Xe 23+	130 Xe 23+ 525				
131 Xe 27+	762	5.8			
131 Xe 35+		9.3	Low intensity.		
132 Xe 22+	804	6.1			
136 Xe 30+	850	6.2			

₇₉ Au				
Ion	E (MeV)	E (MeV/u)	Comments	
197 Au 38+	974	4.9		

9.3 MeV/amu cocktails (M/Q≈3.7, [‡]M/Q≈3.3)

lon	Energy [MeV]	LET ^{MEAS} @surface [MeV/mg/cm ²]	LET ^{MEAS} @Bragg peak [MeV/mg/cm ²]	LET ^{SRIM} @surface [MeV/mg/cm²]	Range ^{srım} [microns]	LET ^{SRIM} @Bragg peak [MeV/mg/cm ²]
¹⁵ N ⁺⁴	139	1.87	5.92 (@191 um)	1.83	202	5.9 (@198 um)
²⁰ Ne ^{+6‡}	186	3.68	9.41 (@138 um)	3.63	146	9.0 (@139 um)
³⁰ Si ⁺⁸	278	6.74	13.7 (@114 um)	6.40	130	14.0 (@120 um)
⁴⁰ Ar ^{+12‡}	372	10.08	18.9 (@100 um)	10.2	118	19.6 (@105 um)
⁵⁶ Fe ⁺¹⁵	523	18.84	29.7 (@75 um)	18.5	97	29.3 (@77 um)
⁸² Kr ⁺²²	768	30.44	41.7 (@68 um)	32.2	94	41.0 (@69 um)
¹³¹ Xe ⁺³⁵	1217	54.95	67.9 (@57 um)	60.0*	89*	69.2 (@48 um)

*Estimated values for 1.22GeV Xenon in Silicon

Towards(/back to) high intensities

- 1. Improve transmission from the ion source to the cyclotron
- 2. Improve the extraction efficiency from the cyclotron
 - Reason to decreased extraction efficiency was mainly ripple in RF voltage due to faulty electronics in phase control
 - Mainly solved
- 3. New 18 GHz RT/SC-ECRIS (plan)
 - New design based on MSU SUSI field configuration

Solutions to improve the transmission

• Two different upgrades are proposed:

A)

B)

Minimization of the high space charge section by moving the ECRIS close to the dipole

Increasing the beam energy in the high space charge section by HV biasing this part of the beam line (increasing the ECRIS extraction voltage)

A) Moving the ECRIS

Effect of removing electrons – beam profile

Ar6+

Ar11+

Hollowness caused by magnetic focusing induced ion species interactions (multiple focal points, "beam-inside-beam")

Space charge affects also non-hollow beams (e.g. Ar11+)

A) Moving the ECRIS

B) HV biased beam line

Slowing down the beam

Simple Einzel lens simulation

Both upgrades

- Upgrades are cumulative
 - Both offer improvement to current situation
- Can be done in phases
 - Flexible realization
 - Downtime in shorter periods
- Proposed: first ECRIS moved, later HV biasing applied to the beam line (biasing easier to do after moving the ECRIS)

Both upgrades

One more step?

- Slowing down the beam after q/m selection does not remove the possible space charge problem in the rest of the beam line
 - However, only one q/m left and the beam current very seldom exceeds the space charge limit (e.g. 1.3 mA for 6 keV proton beam)
- If the space charge is a problem, increase the injection energy

- New central region and inflector in the cyclotron

Future projects (International collaboration)

MIDAS: MInimization of Destructive plASma processes in ECRIS (ENSAR JRA)

•Coordinator: JYFL

•The focus is to increase the extracted current density of ions with mass over charge (M/q) ratio of 3-6, e.g. charge states 21-43 in the case of xenon

•the intensity of highly charged ion beams can be increased substantially by **minimizing the rate of charge exchange reactions**

•the intensities of the extracted beams can be increased by **influencing the ion losses towards the extraction**

Solid state RF amplifiers to replace RF-tubes

The availability of conventional RF-tubes is foreseen to reduce in the future
High power solid state amplifiers already in use for fixed frequency

- •Development needed for a wide frequency range (e.g. 10 21 MHz)
 - •One commercial manufacturer at the moment
 - •High development costs
 - •Divide costs by several customers
 - •R&D as international collaboration

