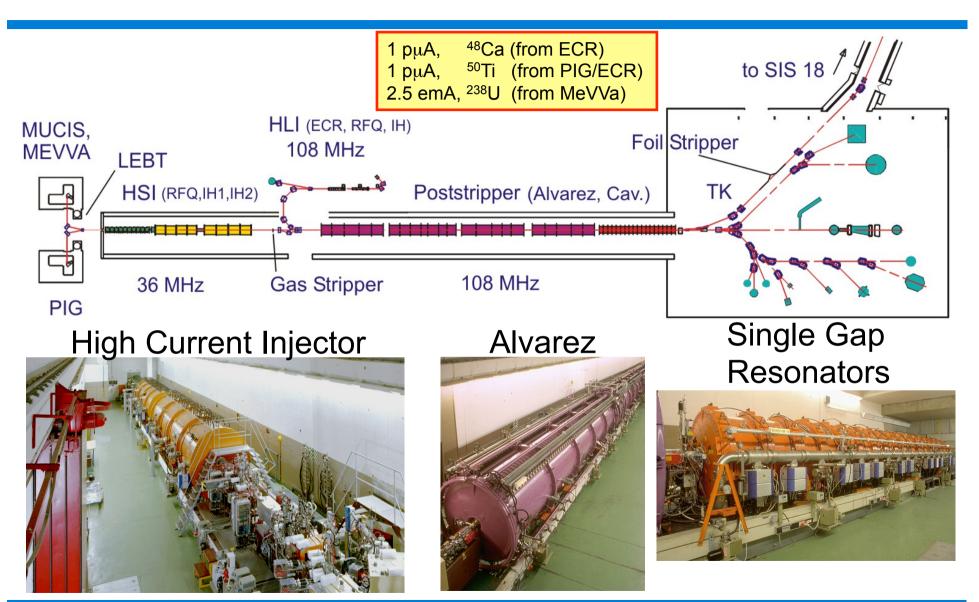
Heavy Ion cw-linac as a future driver option for SHE Physics Experiments at GSI Winfried Barth *GSI, HIM*


Heavy Ion cw-linac as a future driver option for SHE Physics Experiments at GSI

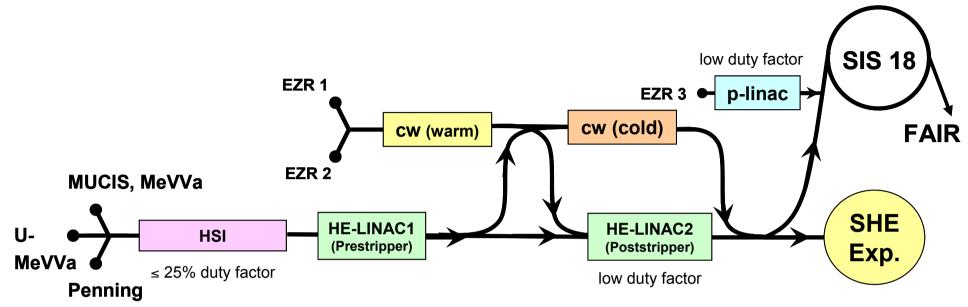
W. Barth, GSI - Darmstadt

- 1. Existing UNILAC and future linac injectors@GSI
- 2. High duty factor upgrade
- 3. cw-linear accelerator concept
- 4. Multicell CH-cavity
- 5. CH-prototype and full performance test
- 6. Summary and Outlook

The GSI <u>UNI</u>versal <u>Linear <u>AC</u>celerator</u>

Requirements for FAIR and the SHE-program

FAIR requirements:


- extremely high pulse intensities
- low repetition rate (max. 3 Hz)
- low duty factor (0,1 %) (pulse length for SIS18 only 100 µs)

SHE requirements:

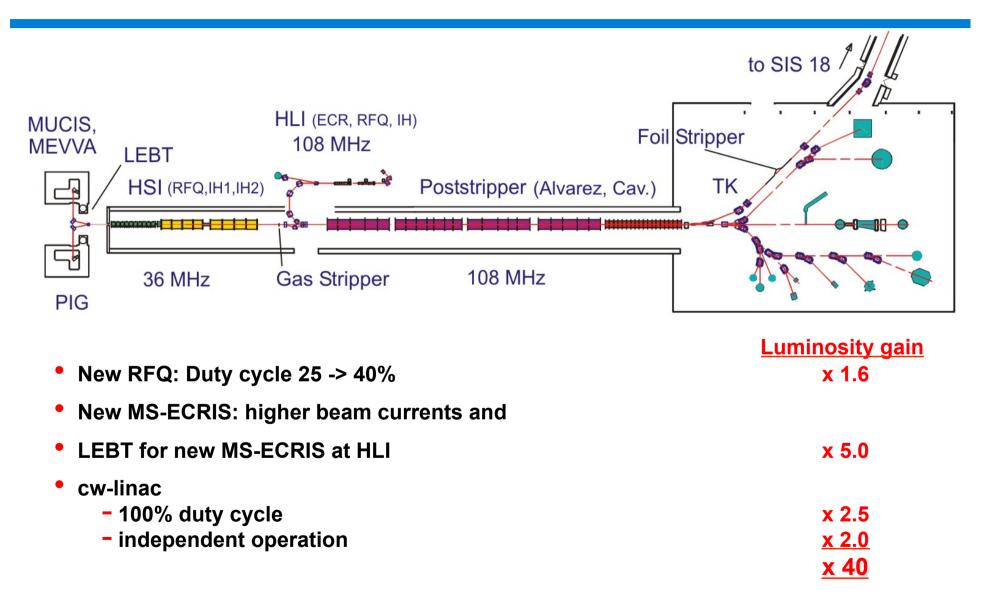
- relatively high pulse intensities
- high repetition rate (50 Hz)
- high duty factor (-> 100 %) (pulse length up to 20 ms)

GSI-Future Option

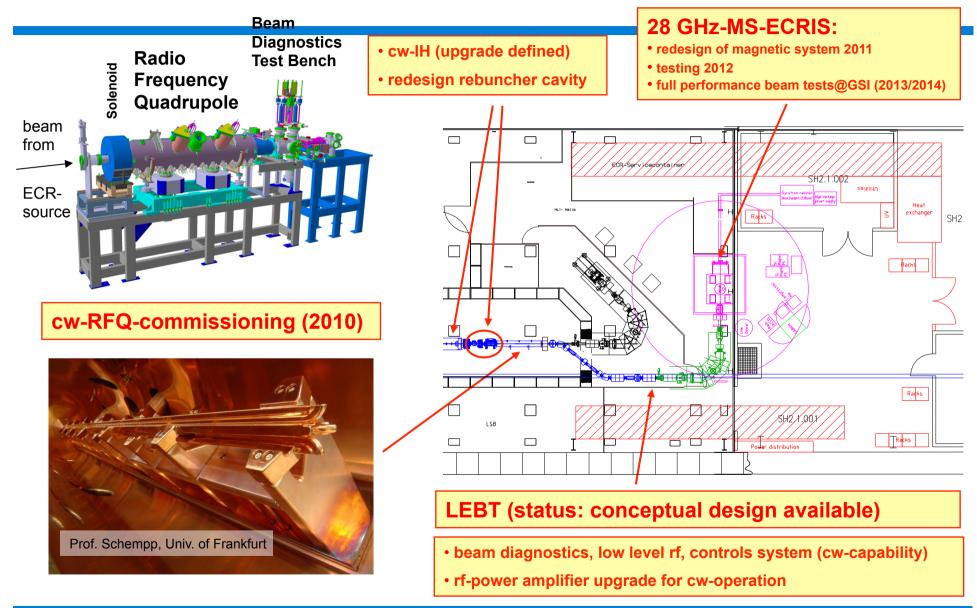
Proton linac-injector for FAIR (FAIR-pbar-physics)

• 70 MeV, 35 (70) mA, 325 MHz, 0.1% duty factor

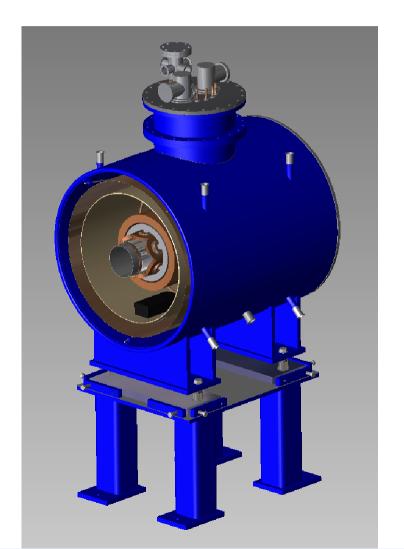
- High Energy injector linac (replacement of Alvarez DTL)
 - Prestripper: 3 MeV/u, A/q = 60 (18 emA), 108 MHz, 1% duty factor
 - Poststripper: 11.4 MeV/u (max. 22 MeV/u), A/q = 6.3 (20 mA, 108/325 MHz, 1% duty Factor

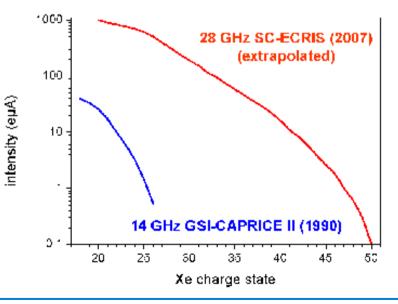

sc-cw-linac (for Super Heavy Element program)

• 3.5 – 7.5 MeV/u, 1 mA, 217 MHz, 100 % duty cycle



Overview/High duty factor upgrade


SHE-UNILAC-Upgrade



28 GHz- ECR ion source/Status Quo

Major steps:

- Completion of sc magnet system and cryostat
- Delivery to GSI/IQ
- Completion of ion source
- Commissioning on test bench
- Installation and commissioning at HLI

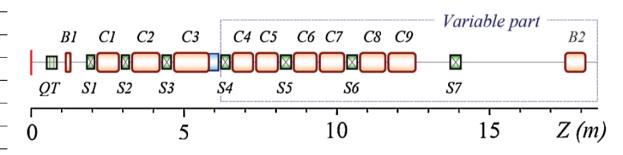
GSI sc-cw-LINAC-project

Motivation:

Element 120, <0.1 pb (1pb <-> 1 event/week)

	GSI- UNILAC	cw-LINAC
Beam Intensity (particles/sec) (S. Hofmann et al, EXON 2004)	3 *10 ¹²	6 *10 ¹³
Beam on target	10 weeks	4 days

UNILAC is not dedicated to SHE, nearly not obtainable to keep SHE @ GSI competetive: Increase of Beam Intensity and Detection Efficiency


General parameters

Mass/Charge		1/6
Frequency	MHz	217
max. beam current	mA	1
Injection Energy	MeV/u	1.4
Output energy	MeV/u	3.5 - 7.5
Output energy spread	keV/u	+- 3
Length of acceleration	m	12.7
Sc CH-cavities		9
Sc solenoids		7

Multicell sc-CH-cavity

- Small number of rf cavities (gap numbers from 10 to 20)
- acc. gradient of 5 MV/m → compact linac design
- Cold solenoids in the inter-tank sections
- Several cavities, solenoids per cryostat
- Cavity lengths range up to around 1 m
- Cylindrical cryostats is typically <6 m long
- At a given frequency: CH-type cavities has very small transverse dimensions

Conceptual layout of the cw-LINAC

CH-cavities

So far...

- sc energy variable linacs: 2 gap or 3 gap-cavities (spiral-, $\lambda/4$ $\lambda/2$ -type, spoke-, ...)
- High flexibility in beam energies and q/m-ratios \rightarrow altering rf-phase relations between cavities and matching the voltage amplitudes

• But: Relatively long lengths between accelerating sections and high total number of cavities including couplers, tuners, controls, and RF power amplifiers

R.T. focusing elements → high number of separated cryostats accompanied by many cold-warm transitions

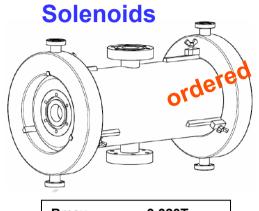
Multicell CH-cavities:

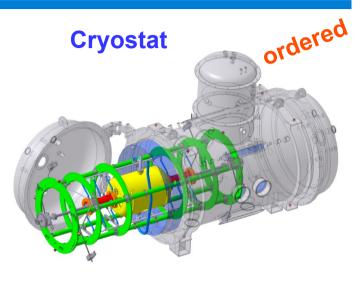
- 10 20 cell cavities + cold lenses (cryostat with several cavities and lenses)
- cavity length \leq 1 m, cryostat length \approx 5 m in length
- H-type cavities: Small transverse dimensions (at a certain frequency)
- A 19-cell 360 MHz prototype successfully developed and operated at Univ. of Frankfurt
- EQUidistant mUlti-gap Structure (EQUUS) + external focusing lenses → Negative initial and final rf-phases; acceleration around the crest of the wave along the middle part. → maximum in accelerating voltage between two neighboring focusing lenses
- EQUUS → eased manufacturing and rf-tuning (importance for sc structures)
- Comfortable beam dynamics layout

Parameters of the sc multi-gap accelerating cavities

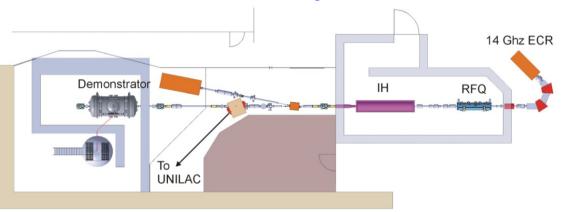
		+								
Parameter	unit	C1	C2	C3	C4	C5	C 6	C7	C8	C9
Gap number		15	17	19	10	10	10	10	10	10
Total length	mm	613	811	1054	636	642	726	726	813	862
Cell length,	mm	40.8	47.7	55.5	63.6	64.2	72.6	72.6	81.3	86.2
Synch. velocity		0.059	0.069	0.080	0.092	0.093	0.105	0.105	0.118	0.125
Aperture diameter	mm	20	22	24	26	28	30	32	34	36
Eff. gap voltage	kV	225	274	317	356	362	408	411	459	538
Voltage gain	MV	3.13	4.14	5.42	3.27	3.30	3.73	3.73	4.18	4.43
Phase Factor*		0.93	0.89	0.90	0.92	0.91	0.92	0.91	0.91	0.82
Accelerating rate	MV/m	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1

* The parameter named "phase factor" characterizes the accelerating efficiency with respect to the phase sliding along the section.




sc-216 MHz-CH-Protype

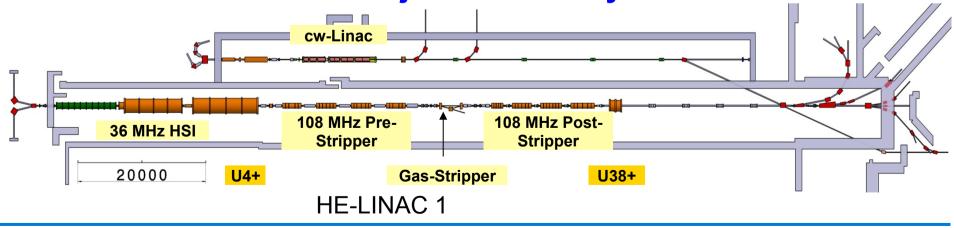
216 MHz-CH-cavity Goethe Univ. Frankfurt)


Parameter	Unit	CH-1
Beta		0.059
Frequency	MHz	217
Gap number		15
Total length	mm	690
Cavity diameter	mm	420
Cell length	mm	40.82
Aperture	mm	20
Effective gap voltage	kV	225
Voltage gain	MV	3.13
Accelerating gradient	MV/ m	5.1
E _p / E _a		6.5
B _p / E _a	mT/ (MV/m)	5.9
R/ Q	Ω	3540
Static tuner		9
Dynamic bellow tuner		3

Bmax	9,323T
B*L	2,635 Tm
L	0,28 m
Aperture	30 mm

Demonstrator Project (HIM, GSI)

Summary


- FAIR high current requirements should be reached by the upgrade of the 35 years old UNILAC (not compatible with SHE-requirements).
- A high duty factor upgrade of the HLI is still ongoing:
 - cw-RFQ (commisioning)
 - 28 GHz ECR (R&D)
 - Low Energy Beam Transport (layout)
- A conceptual layout of a separate cw-LINAC for the SHE experimental program is well prepared
 - Choice of acc. structure (multicell CH)
 - EQUUS-design
 - Cold Solenoids (< 10T)
 - Basic Beam dynamics layout
 - Error studies
- CH-Demonstrator
 - CH-cavity, sc-solenoids, cryostat, rf-amplifier still ordered
 - rf-testing@GUF scheduled (2013)
 - test environment in preparation
 - full performance beam test scheduled (2013/14)

Schedule

	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	
Heavy Ion-LINAC-Injector for FAIR-commissioning/-operation							UNILAC CW-LINAC					HE-LINAC				
p-LINAC as FAIR-injector									FAIR-proton-LINAC							
UNILAC-Upgrade "Campus Development"																
FAIR-UNILAC-Upgrade																
SHE-UNILAC-Upgrade																
FAIR-Protonen-LINAC	Techn.	Techn. Design						nting& ssioning								
cw-CH-LINAC-Demonstrator			beam test													
sc-cw-LINAC	Designp	bhase							nting& ssioning							
HE-LINAC (Step 1)			Designphase								nting& ssioning					
HE-LINAC (Step 2)							Designphase								nting& ssioning	

Advanced injector linac layout

