

Summary Experiment

R.-D. Herzberg Ch.E. Düllmann

Discovery of a new element is as fascinating to the public as landing on the moon (or Mars)

"The question we're trying to answer is, 'Does the periodic table come to an end, and if so, where does it end?' " Kenton Moody -- LLNL

Yuri Oganessian. "Synthesis of SH-nuclei" FUSHE 2012, May14, 2012, Weilrod, Germany

Scientific Questions

- What is the heaviest element we can make?
- What is the heaviest nucleus we can make and what are the best methods to do so?
- What is the nuclear structure in the heaviest nuclei?
- What are the chemical and atomic properties of the heaviest elements and is chemical periodicity altered as relativistic effects become more important?
- Are there astrophysical scenarios in which SHEs are produced or does fission limit the production of SHEs? Do the heaviest elements exist in nature?
- (How) Can we produce weighable quantities on earth?

What is the heaviest element?

• Where is the island of stability?

• What are the best methods to create them?

• What determines their survival and stability?

• What are their properties?

Yuri Oganessian. "Synthesis of SH-nuclei" FUSHE 2012, May14, 2012, Weilrod, Germany

Modern Periodic Table of Elements

New Elements / Isotopes

Observed are mainly integral quantities:

- The atom itself!
- Decay mode
- Half-life
- Q-value or TKE

A rich and growing body of data!

Creation

• Reaction mechanisms?

• Best target/beam combinations?

How reliably is theory predicting cross sections?

2. SHE experiments (what could be really done within the next few years)

Valeriy Zagrebaev

Flerov Laboratory of Nuclear Reactions, JINR, Dubna for "Future of Super Heavy Elements", *May 14, 2012*, Weiltal, Germany

New element discovery has progressed steadily since the 1700's

Making new elements

E120

Z _{Beam}	Beam	Target	Asymmetry	E*@B _{Bass}
22	⁵⁰ Ti	²⁴⁹ Cf		31.7
23	⁵¹ V	²⁴⁹ Bk		35.9
24	⁵⁴ Cr	²⁴⁸ Cm		33.0
25	⁵⁵ Mn	²⁴³ Am		34.5
26	⁵⁸ Fe	²⁴⁴ Pu		33.9
27	⁵⁹ Co	²³⁷ Np		32.9
28	⁶⁴ Ni	²³⁸ U		27.3

Strategic aspect: The community depends on access to transuranium isotopes in mg quantities!

TĽi

Transuranium Nuclide Production Paths

Fusion evaporation reactions

SOIRIZ_{CNRS/IN2P3}

CEA/DSM

H. Savajols

Cross sections: current predictions from theory

⁵⁰Ti+²⁴⁹Cf Excitation Function

⁵⁰Ti+²⁴⁹Bk Excitation Function

Ch.E. Düllmann

DPG Frühjahrstagung 2012

Johannes Gutenberg-Universität Mainz

19.-23. März 2012

The **TASCA** Element 119 Collaboration

G G G G S I Darmstadt (D)

D. Ackermann, M. Block, F.P. Heßberger, A. Hübner, E. Jäger,

March 6: Arrival of ²⁴⁹Bk in Mainz

.....

JOHANNES UN

March 23: Arrival of Targets at GSI

April 12: Mounting Targets in TASCA

April 14: Begin Search for Element 119

ITE Warsaw (PL)

MACIONAL U Bogota

L.G. Sarmiento

M. Wegrzecki

Ch.E. Düllmann

DPG Frühjahrstagung 2012

Johannes Gutenberg-Universität Mainz – 19.-23. März 2012

(How) can we produce weighable quantities

....SHE exists for 1200 a, but nobody knows!!

Need 1: detection system for EC Need 2: non-destructive 1 atom detection / manipulation method!

(How) can we produce weighable quantities

Cold fusion

New elements from RIB facilities (LOL)

Detection

- Shortest halflives:
 - Survival through separator?
 - Disentangling of fast decays?
- Longest halflives:
 - Detection by decay chain not optimal
- Identification through:
 - Chemical ID
 - Mass measurement
 - X-ray fingerprinting
 - cross bombardment
 - alpha chains

X-ray Fingerprinting of Superheavy Nuclei

Courtesy: Spokesperson D. Rudolph, Lund Uni, Sweden

Rates?

- Factories planned:
 - Dubna
 - GSI
 - Others?

What do we use the extra beamdose for?

- -> Push boundaries
- -> Precision studies

Spherical Shells

- Where is the island of stability?
 - Where is the shoreline?
 - Where is the peak?
- Experimental body of data still very neutron deficient

Yuri Oganessian. "Synthesis of SH-nuclei" FUSHE 2012, May14, 2012, Weilrod, Germany

Fission

• Fission barriers are key to the problem.

• Experiment: Half-life and height

• BUT: underlying structure is highly complex!

The potential energy is calculated in the following grid points:

M. Kowal

M. Kowal, P. Jachimowicz, and A. Sobiczewski Phys. Rev. C 82, 014303 (2010)

What is the nuclear structure in SHE?

• What is the single particle structure of SHE?

• What are the collective properties?

• What role do isomeric states play in SHE?

Nuclear Structure

• Provide non-integral data

• Looks at lower mass systems:

"Push the Fermi level towards the major shell gaps"

- Rod Clark

In-beam spectroscopy

• Rotational bands

• Configurations of excited states

 Potential to provide the most detailled and complete picture of nuclear structure

How to make progress with in-beam experiments

Need:

Better separators (but can only gain a factor of 2 or so in transmission)

Better arrays (ultimate gain factor of 5 in singles) AGATA, GAMMASPHERE, GRETINA, EXOGAM

Higher beam intensities (digital electronics a must)

One can maybe reach cross sections of ~ 1 nb

M. Leino

P. Reiter et al., PRL 82, 509 (1999)

A. Lopez-Martens

Issues

- availability of long-lived (trans)actinide targets
- maximum allowed activity at various facilities and other security issues
- count rates in the arrays due to the activity of the target
- What statistics is required to perform "meaningful" & unambiguous spectroscopy ?

											90	III, g	2 U , <u>9</u>	4 ⊢ u,	95	I, 96		arget
		107	253 Bh	254 Bh	255 Bh	256 Bh	257 Bh	258 Bh	259 Bh	260 Bh	261 Bh	262 Bh	263 Bh	264 Bh	265 Bh	266 Bh	267 Bh	268 Bh
		106	252 Sg	253 Sg	254 Sg	255 Sg	256 Sg	257 Sg	258 Sg	259 Sg	260 Sg	261 Sg	262 Sg	263 Sg	264 Sg	265 Sg	266 Sg	267 Sg
		105	251 Db	252 Db	253 Db	254 Db	255 Db	256 Db	257 Db	258 Db	259 Db	260 Db	261 Db	262 Db	263 Db	264 Db	265 Db	266 Db
		104	250 Rf	251 Rf	252 Rf	253 Rf	254 Rf	255 Rf	256 Rf	257 Rf	258 Rf	259 Rf	260 Rf	261 Rf	262 Rf	263 Rf	264 Rf	265 Rf
		103	249 Lr	250 Lr	251 Lr	252 Lr	253 Lr	254 Lr	255 Lr	256 Lr	257 Lr	258 Lr	259 Lr	260 Lr	261 Lr	262 Lr	263 Lr	264 Lr
		102	248 No	249 No	250 No	251 No	252 No	253 No	254 No	255 No	256 No	257 No	258 No	259 No	260 No	261 No	262 No	263 No
244 Md	245 Md	246 Md	247 Md	248 Md	249 Md	250 Md	251 Md	252 Md	253 Md	254 Md	255 Md	256 Md	257 Md	258 Md	259 Md	260 Md	261 Md	
243 Fm	244 Fm	245 Fm	246 Fm	247 Fm	248 Fm	249 Fm	250 Fm	251 Fm	252 Fm	253 Fm	254 Fm	255 Fm	256 Fm	257 Fm	258 Fm	259 Fm	260 Fm	
			146		148		150		152		154		156		158		160	

⁷⁸Pt,₇₉Au,₈₀Hg,₈₁Tl,₈₂Pb,₈₃Bi targets

Decay Spectroscopy

• Provides the link between Q-values and masses

- Traces single particle structure
- Can be used with highest beams and smallest cross sections

• Can be used with other methods (chemical, traps)

<u>Physics Motivation for Decay and Nuclear</u> Structure Investigations in the Region of SHE

Why Decay and Nuclear Structure F.P. Hessberger

investigations ?

- →Atomic nucleus is quantum mechanical ensemble of nucleons (protons, neutrons)
- →Properties determined by ,fundamental' interactions
 - nucleon nucleon interaction
 - Coulomb interaction
 - spin orbit interaction

-

- →Understanding decay properties and nuclear structure – Understanding ,fundamental' interactions
- →Superheavy nuclei (SHE) = ensembles of ,extremely' large numbers of protons and neutrons

- \rightarrow Nuclear stability limited by fission
 - Fission barriers in SHE determined by shell structure; B_{sf} depends on single particle levels
- \rightarrow mass excess (-> determines Q-values for α- and β- decay)
- →Understanding ,basic' decay properties essential for understanding limits of stability
- →Understanding nuclear structure is essential for understanding properties and stability of SHE

Decay spectroscopy

F.P. Hessberger

$\rightarrow \underline{\alpha}$ - and α - γ - spectroscopy

Q-values, shell crossings;

Information on low lying Nilsson levels from energy and HF for $\underline{\alpha}$ -decay as well as from energy, intensity and multipolarity of γ -rays.

→ systematic trends in odd mass – even Z nuclei along isotone line

 \rightarrow systematic trends in odd mass – odd Z nuclei along the isotope line Comparison with theory

→Spontaneous fission Fission barriers, hindrance factors, TKE

\rightarrow <u>EC – decay</u>

Often population of higher lying levels than by $\underline{\alpha}$ -decay with notable intensities; similar information, implantation method requires CE – K X-ray – v- coincidences for identification

implantation method requires CE – K X-ray – γ - coincidences for identification

\rightarrow K – Isomers

Multi – quasiparticle (2q-proton, 2q-neutron,) configurations, typically at $E^* > 1$ MeV; information on lower lying qp-states, Nilsson levels, level ordering, vibrational states and bands built up on them CE – γ coincidences required

What are the chemical and atomic properties of the heaviest element?

• With their position in the Periodic Table being fixed by Z, do the SHE's chemical properties conform to those of the lighter homologs?

• What is the influence of relativistic effects?

 How well are these – and their consequences – understood

Superheavy Element Chemistry

For a real understanding of SHE chemistry: relevant theoretical work

104-108	109-111	112-114	115+
10 s – 1 min	<< 1s	few s	0.1 s
1 day	1 s	up to 30 s	0.2 s
ction			
10s nb-pb	"small"	few pb	1 pb
of SHE chemist	ry community		
High	Negligible	Very high	to come
any techniques			
	104-108 10 s - 1 min 1 day ction 10s nb-pb of SHE chemist High any techniques	104-108109-11110 s - 1 min 1 day<< 1 s	104-108109-111112-11410 s - 1 min 1 day<< 1s

Anion-exchange behavior of Rf in HF/HNO₃

A. Toyoshima *et al.*, Radiochim. Acta **96**, 125 (2008).

Chemistry experiment @ high sensitivity

25 decay chains from ^{269,270,271}Hs were detected within 5 weeks Excitation function was measured @ 5 beam energies

FUSHE Workshop 2012, 13 -16.05.2012, Weilrod GERMANY

Chemistry of new Elements (Z=109-111)

This page intentionally left blank

PSI-FLNR results Cn+114 (2006-2008)

Chemistry of new Elements (Z=112+)

SHE Chemistry

What are the most important experiments possible with present facilities?

(-> depends on your facility...)

Which exciting experiments will be enabled with planned accelerator and equipment upgrades?

- -> experiments with "unknown" elements
- -> new techniques (el.chem; preseparation; ...)
- -> high-statistics exps. beyond Db
- -> new SHE compound classes
- -> access to so far inaccessible observables (mass,...)
- -> chemical separators for nuclear physics

In which directions should future developments proceed to maximize scientific opportunities?

Importance of Masses for Z > 100

- masses provide absolute nuclear binding energies
- masses allow studies of the shell structure evolution
- high-precision mass measurements provide anchor points to fix decay chains
- benchmark nuclear models

Nuclear properties from laser spectroscopy

Hyperfine structure interaction

1. Magnetic Dipole HFS $A = \frac{\mu_{l} < H_{e}(0) >}{IJ} \Rightarrow \text{Nuclear magnetic moment } \mu_{l}$ 2. Electric Quadrupole HFS

 $B = eQ_s < \varphi_{ii}(0) > \Rightarrow$ Spectroscopic quadrupole moment Q_s

3. Coupling

$$J + I = F \implies$$
 Nuclear spin I

Isotope shift

$< r^2 > A, A'$ change of mean square charge radius

Challenges (I)

- Create elements beyond E118.
- Fill the gap between the isotopes produced in cold and hot fusion.
- Synthesize more neutron rich isotopes.
- What role can RIBs play?
- Can we shift the reaction paradigm again?

Challenges (II)

Structure:

- What are the experimental uncertainties? What data can reliably be used by theorists?
- What new experimental data is needed? Is there guidance from theory in that respect?
- Can we use alternative (optical) methods to extract reliable information on structure?

Urgently needed: (Firm) determination of key observables

Spin-parity: 253 Es I^{π} = 7/2⁺ from optical spectroscopy, magnetic moment How to proceed towards higher Z?

M. Leino

Proton Number

Challenges (III)

- Chemistry
 - Increase production rate for long-lived isotopes!
 - Make new elements!
 - New observables?
 - Direct display of relativistic effects: best done where?
 - Direct chemical speciation
 - What new experimental data is needed? Is there guidance from theory in that respect?

Training and Education

• Remember Walter Loveland's question:

Where does the next generation of SHE scientists come from?