

b

Vacuum Chromatography with SHE

Heavy Elements group

Paul Scherrer Institute & University of Bern

Vacuum Chromatography

Pros:

Rapidity
 No aerosols
 Better spectroscopic resolution
 Less surface contamination

Cons:
Target overheating no gas cooling

Less chromatographic resolution

Recoil stopping

Vision: Isothermal On-line Vacuum Chromatography

Ta crucible with induction heating or Electron beam heating Isothermal chromatography column (100-1200K)

Hot target Intermetallic actinide/noble metal targets

A simple idea:

Electrodeposition on a noble metal backing with a subsequent reduction in H_2 atmosphere.

•Chemical equation of a coupled reduction process :

 $AcxOy + yH_2 \rightarrow xAc + yH_2O$ Does not work.

 $\Delta H(AcxOy) \leq -1500 \text{ kJ/mole}$

xMe + AcxOy + yH₂ → xAcMe + yH₂O Works with a noble metal. $\Delta H(AcMe) \le -400 \text{ kJ/mole}$

Molecular Plating

Deposition thickness	0.73 mg ⋅ cm - 2
Solvent	Isopropanol
Backing	Pd foil
Area deposited	0.38 cm ²
Current	0.8 – 2.1 mA·cm ⁻²
Potential	500 – 800 V
The distance between two electrodes	1 cm
Overall deposition time	Performed in 5 consecutive steps. Each step 50 min long.
Temperature	25°C
Anode	Platinum spiral wire

Coupled Reduction

I. Usoltsev et al. submitted NIMA 2012

Analysis

Alpha spectra (²⁴¹Am) before and after coupled reduction.

Alpha spectrum of the plated material before reduction.

After reduction. 100 ml/min H_2 at 1270°C (30 min).

Analysis

b

E.g. SEM picture of the Eu/Pd product.

EDX overview spectrum of the Eu/Pd product. Eu disapeared into the Pd below the probing depth of electrons.

²⁴³Am Targets on 3 μ m Pd fors

Two targets prepared with 0.7 mg/cm² and 1.4 mg/cm² ²⁴³Am

The targets were irradiated with 750 pnA ⁴⁸Ca for several days at FLNR Dunba.
 Integral beam was 1.2*10¹⁸ on target 1 and 0.6*10¹⁸ on target 2.
 No considerable destruction, losses or relocation of ²⁴³Am within the targets observed.

b

Release Enthalpy

$$\Delta H_{f} = \Delta H_{Subl} - \Delta H_{Sol}$$

Miedema model: Intermetallic solid solution

B	B
B	В

$$\Delta H_{sol} = \frac{2 \cdot V_{Asol}^{2/3}}{n_{WSA}^{-\frac{1}{3}} + n_{WSB}^{-\frac{1}{3}}} \cdot \left(Q \cdot \left(n_{WSA}^{\frac{1}{3}} + n_{WSB}^{\frac{1}{3}} \right)^2 - P \left(\Phi_A^* - \Phi_B^* \right)^2 - R_m \right)$$

$$V_{Asol} = V_A \cdot \left(1 + a \cdot \left(\Phi_A^* - \Phi_B^* \right) \right)^{\frac{3}{2}}$$

 n_{WS} = electron density at the boundary V_{Asol} = molar volume of the species in solution Φ^* = chemical potential of electrons $P/Q/R_m$ = proportionality factors (empirically derived)

Semi empirical model adjusted to hundreds of binary compounds

A.R. Miedema, J. Less-Comm. Met. 46, 67 (1975)

Catcher / Release

Enthalpies of release of A from B at infinite dilution [kJ/mol]

D. Wittwer et al. Phys. Chem.A 2012 submitted

Release: Experimental Results

b

D. Wittwer et al. Phys. Chem.A 2012 submitted

-Release can be measured easily -If the diffusion is the rate determining factor, diffusion coefficients can be

calculated from the release rate

Q

$$F = 1 - \frac{\sigma}{\pi^2} \cdot \exp\left(-\frac{Dt\pi}{d^2}\right)$$

1

 $D t \pi^2$

-Further the activation energy can be deduced

$$\ln\left(\frac{\left(-\ln\left((1-F)\frac{\pi^{2}}{8}\right)\right)d^{2}}{t\pi^{2}}\right) = -\frac{Q}{RT} + \ln(D^{0})$$

In

$$\frac{\left(-\ln\left((1-F)\frac{\pi^{2}}{8}\right)\right)d^{2}}{t\pi^{2}}$$
In

$$\frac{Q}{RT} + \ln(D^{0})$$
R is the Boltzmann constant in *J/mol*K⁻¹*

D is the diffusion coefficient or diffusivity in *m²/s*

D₀ is the *preexponential* factor in m^2/s

t is the bake out time in s

d thickness of the foil in *cm meter!*!.

Q activation energy in *J/mol*

R is the Boltzmann constant in *J/mol*K*⁻¹

Release:

Experimental Results

Fig. 1. ln ρ(840 ° C) versus V_{imp} / V for hcp-Zr. Approximation by two straight lines; m: slope of the lines; (●) interstitial diffusers, (○) substitutional diffusers, (○) hcp-Zr self-diffusion.

R. Tendler et al, J. of Nucl. Mat. 150, 251 (1987)

G. Neumann, Self Diffusion and Impurity Diffusion in Pure Metals, Pergamon Materials Series G.J. Beyer et al., NIMPR B 204, 2003, 225

D. Wittwer et al. Phys. Chem.A 2012 submitted

Results:

Prediction of Diffusion Constants

Predictions - SHE

using Tendler's atomic volume approach

b

Example Prediction - SHE

$$F = 1 - \frac{8}{\pi^2} \cdot \exp\left(-\frac{Dt\pi^2}{d^2}\right)$$

D. Wittwer et al. 2012 in preparation

Example Prediction - SHE

PAUL SCHERRER INSTITUT

Relative temperature T/T_{m(catcher)}

Tests with short-lived isotopes needed!

D. Wittwer et al. 2012 in preparation

Detectors: CVD Diamond

Test experiments with CVD Diamond detectors

b

Operation of the detector in the vicinity of a hot oven (IR-vis light) possible.

Vision: Isothermal On-line Vacuum Chromatography

Ta crucible with induction heating or Electron beam heating Isothermal chromatography column (100-1200K)

R&D of a first setup coming soon!