

The ALTO facility

F. AZAIEZ

PAC: One/year

- R. F. CASTEN , Chair (Yale University)
- E. BALANZAT (CIMAP Caen)
- D. BALABANSKI (ELI-Bucharest)
- S. GREVY (CENBG)
- E. KHAN (IPNO)
- P. REGAN (Univ. Surrey, UK)
- B. RUBIO (IFIC Valencia)
- C. TRAUTMANN (GSI)
- A. TUMINO (LNS -Catania)
- J. C. THOMAS (GANIL)
- P. REITER (Univ Köln)

Possibility to run ISOL and Tandem simultaneously (has been proven this summer)!

300 outside users (30 countries)/year

TNA	Number of beam hours promised - full contract	Number of beam hours 01/09/2010 - 31/ 10/2014	Estimated number of Users - full contract	Number of Users 01/09/20 10 - 31/ 10/2014	Estimated number of days - full contract	Number of days 01/09/2010 - 31/ 10/2014	Estimated number of projects - full contract	Number of projects 01/09/2010 - 31/ 10/2014	Total amount for T&S - full contract	Amount for T&S 01/09/2010 - 31/ 10/2014	Amount for other direct costs - full contract (AGATA)	Amount for other direct costs (AGATA) 01/09/2010 - 31/ 10/2014	Access costs - full contract	Access costs 01/09/2010 - 31/10/2014
	1470	3840	116	119	556	875	19	28	73 720€	93 124€	0€		151 998€	397056

in 2014 ALTO-SIB and ALTO-RIB ran in parallel !

Physics with the Tandem beams

The Orsay Gamma Array : ORGAM

TDRIV on H-like ions: ²⁴Mg - revisited

G. Georgiev (CSNSM), A.E. Stuchbery (ANU), Dec. 2012

Nuclear spin orientation in incomplete fusion reactions

Pulsed 7Li beam 16 MeV on 64Ni target

Nuclear spin orientation – a must for nuclear moments studies

- Fusion-evaporation reactions 25 % 75 % alignment
- Projectile-fragmentation 8 % 13 %
- Direct reactions (single-nucleon transfer) ~ 13 %
- Incomplete fusion (multi-nucleon transfer?) ???

Amplitude = 8 (1) % Spin alignment = 23 (3) %

G. Georgiev (CSNSM) Dec. 2013

Amplitude = 4.8 (8) % Spin alignment = 12.5 (20) %

Results:

- considerable spin alignment in ⁷Li induced reactions;
- dependence on the number of transferred nucleons?

MINORCA Campaign

12 ORGAM AC HPGe x 0.1%

8 Miniball triple cluster at ~14 cmfrom target7.3% efficiency @ 1.33 MeV

MINORCA Accepted Proposals

Total number of MINORCA requested UTs: 232 (about 80 days)

- Single-particle structure in the second minimum. Search for high-K bands above fission isomers. (G. Georgiev - CSNSM) → 45 UTs
- g factor measurements of short-lived states in the Mg isotopes towards the Island of Inversion: 26Mg and 28Mg (G. Georgiev - CSNSM) → 18 UTs
- Shape coexistence in 74Se studied through complete low-spin spectroscopy after Coulomb excitation (M. ZIELINSKA - SPhN) → 21 UTs
- Measurement of octupole collectivity in Nd, Sm and Gd nuclei using Coulomb excitation (P.A. Butler - Univ. of Liverpool) → 21 UTs
- 5. Spectroscopy of the neutron-rich fission fragments produced in the 238U(n,f) reaction (J. Wilson - IPN) → 45 UTs
- 6. Evaluation of the Angular Momentum Dependence of the 96Mo γ Strength Function (B. Goldblum Univ of California) \rightarrow 22 UTs
- 7. Search for X(5) symmetry in 78Sr nucleus (K. Gladnishki Univ of Sofia) 21 UTs
- 8. Lifetime Measurement of 100Ru: A possible candidate for the E(5) critical point symmetry (T. Konstantinopoulos CSNSM) 18 UTs
- 9. Lifetime measurements in 113Te: Determining Optimal effective charges approaching the N=Z=50 doubly-magic shell closure. (D.M. Cullen Univ of Manchester) 21 UTs

Physics with the Tandem beams

The Tandem driven monochromatic neutron source

Physics with the Tandem beams

MINORCA+LICORNE

Physics with the Tandem beams The Split Pole spectrometer and nuclear astrophysics

²⁶Al(n,p)²⁶Mg and ²⁶Al(n, α)²³Na in massive stars

S. Benamara, N. de Sereville Phys.Rev. C 89, 065805 (2014)

²⁶Al nucleosynthesis in massive stars

- Core H burning
- Ne/C convective shell burning
- Explosive Ne burning

Limongi et al., Iliadis et al.

Reaction: ²⁷AI(p,p')²⁷AI @ 18 MeV

- Targets: 27 Al, 12 C & mylar ~ 80 μ g/cm²
- SPLITPOLE : high-resolution measurement → θ = 10°, 25°, 40° & 45°

²⁶Al yield depends crucially on ²⁶Al(n,p) and ²⁶Al(n, α) reactions Rates x2 \rightarrow ²⁶Al yield /2 Lack of spectroscopic information in ²⁷Al

- ²⁷Al levels: kinematics displacement between $\Theta = 40^{\circ}$ and 45°
- Many new states above (and below) neutron threshold
- Good agreement with known resonances

Big-bang & ⁷Li cosmological problem

7Li/H

10

WMAP

F. Hammache, N. de Sereville, I. Stefan

- When T < $10^9 \text{ K} \rightarrow \text{BBN starts}$
 - Production of D, ³He, ⁴He, ⁷Li
 - Abundances depend on baryonic density
- D, ³He, ⁴He, observations agree with predictions (BBN + CMB)

⁷Li problem: $(^{7}Li/H)_{BBN} / (^{7}Li/H)_{obs} = 4$

$\begin{bmatrix} 4 & 1 & 1 \\ 1 & 1 \end{bmatrix}$

Metal poor halo dwarf stars $\eta \times 10^{10}$

⁷Li

Possible explanations:

- Physics beyond standard model: super-symmetry, constant variation,
- Observations: can ⁷Li be uniformly destroyed in the Splite plateau region?
- Nuclear physics: ⁷Li produced by ⁷Be EC & ³He(⁴He,g)⁷Be known better than 15%

Last proposed solution studied with SPLITPOLE @ IPN Orsay

- $^{7}\text{Be} + {}^{3}\text{He} \rightarrow {}^{10}\text{C}^{*}$ hypothetical state at ~ 15 MeV (1-, 2-)
- ¹⁰C studied ¹⁰B(³He,t)¹⁰C* @ 35 MeV
- Conclusion -> probably no solution from nuclear physics

Phys.Rev. C 88, 062802 (2013)

ALTO: a radioactive ion beam facility

2014 a bad year for ALTO-RIB! Many failures of very old parts of the e-LINAC (modulator, Klystron etc...) Measured productions yields at the detection point on line with the PARRNe mass separator electrons -> gamma induced fission

nominal intensity: 10 μ A \Rightarrow ~ 10¹¹ fissions/s

Production pps /10 µA e-

The ALTO laser ion source RIALTO (Resonant Ionization at ALTO)- S. Franchoo et al.

R. Li, D. Yordanov, IPN OrsayV. Fedosseev, T. Day Goodacre, B. Marsh, IsoldeK. Flanagan, University of ManchesterT. Kron, K. Wendt, University of Mainz

2011, 2012: Gallium with two ionisation schemes 2013: Zinc with frequency tripling 2014: Off-line chamber for development of laser schemes

PHYSICAL REVIEW C 88, 047301 (2013)

Probing nuclear structures in the vicinity of ⁷⁸Ni with β - and β *n*-decay spectroscopy of ⁸⁴Ga

K. Kolos,^{1,2,*} D. Verney,¹ F. Ibrahim,¹ F. Le Blanc,^{1,3} S. Franchoo,¹ K. Sieja,³ F. Nowacki,³ C. Bonnin,¹ M. Cheikh Mhamed,¹ P. V. Cuong,⁴ F. Didierjean,³ G. Duchêne,³ S. Essabaa,¹ G. Germogli,¹ L. H. Khiem,⁴ C. Lau,¹ I. Matea,^{1,5} M. Niikura,^{1,5} B. Roussière,¹ I. Stefan,¹ D. Testov,^{1,6} and J.-C. Thomas⁷
¹Institut de Physique Nucléaire, CNRS/IN2P3 and Université Paris Sud, Orsay, France ²University of Tennessee, Knoxville, Tennessee 37996, USA
³Institut Pluridisciplinaire Hubert Curien, CNRS/IN2P3 and Université de Strasbourg, Strasbourg, France ⁴Center of Nuclear Physics, Institute of Physics, Vietnam Academy of Science and Technology, Hanoi, Vietnam ⁵Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan ⁶Flerov Laboratory of Nuclear Reactions, Joint Institute of Nuclear Research, Dubna, Russia ⁷Grand Accélérateur National d'Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, Caen, France (Received 4 August 2013; revised manuscript received 2 September 2013; published 14 October 2013)

The decay of ⁸⁴Ga has been reinvestigated at the PARRNe online mass separator of the electron-driven nstallation ALTO at IPN Orsay. The nominal primary electron beam of 10 μ A (50 MeV) on a ²³⁸UC_x target n combination with resonant laser ionization were used for the first time at ALTO. Improved level schemes of the neuron-rich ^{63,64}Ge (Z = 32) isotopes were obtained. The experimental results are compared with the state-of-the-art shell model calculations and discussed in terms of collectivity development in the natural valence space outside the ⁷⁸Ni core.

The ALTO laser ion source **RIALTO** (Resonant Ionization at ALTO)

Installation supervised by S. Franchoo R. Li and C. Lau **IPN Orsay** with the collaboration of **ISOLDE**: V. Fedosseev, B. Marsh, T. Goodacre **Univ. Manchester**: K. Flanagan

installation ALTO at IPN Orsay. The nominal primary electron beam of 10 μ A (50 MeV) on a ²³⁸UC_x target in combination with resonant laser ionization were used for the first time at ALTO. Improved level schemes

Stable gallium							
	287nm (300m W)	532nm (~10W)	lons (nA)				
	off	off	1.3				
	\checkmark	off	1.3				
	off	\checkmark	1.3				
	\checkmark	\checkmark	22				
	ionization potential	1	48387.6 cm-1				
	532 nm 43 ² 4d ³ D _{3/2} 34 781.6 cm-1 287 nm						
%	$\frac{4s^24p}{4s^24p} \frac{^{2}P_{1/2}}{^{2}P_{1/2}} - \frac{826.2 \text{ cm-1}}{\text{Ga}}$						
	two new dye lasers (Radiant Dye) enhancement x18						

Gallium on and off-line in 2012

Radioactive	69Ga
-------------	------

287nm (250m W)	294nm (130m W)	532nm (~10W)	lons (pA)					
off	off	off	66					
\checkmark	off	\checkmark	150					
off	\checkmark	\checkmark	220					
\checkmark	\checkmark	\checkmark	305					
48387.6 cm-1 532 nm 4s ² 4d ² D _{3/2} 34 781.6 cm-1 294 nm 287nm								
$\frac{4s^{2}4p}{4s^{2}4p} \frac{^{2}P_{3/2}}{^{2}P_{1/2}} = \frac{62s^{2}}{6s} = \frac{1}{6s}$								

both ground and metastable state short-lived pyrromethene dye enhancement x3 x2

Physics with ALTO LE RIBs

Approved experiments to be scheduled

The variety of the physics program at ALTO strongly depends on available LERIB lines and their instrumentation

