Highlights on ⁵⁶Ni

GANIL Existing Facility

SOUMYA BAGCHI KVI / RUG For the MAYA collaboration ENSAR Meeting, Warsaw

Outline:

- Introduction to Giant Resonances
- Importance of compression modes in nuclei
- Experimental Setup (MAYA)
- Results
- Hint for alpha clustering (H. Akimune)
- Summary and outlook

Giant Resonances:

Collective oscillations of all neutrons and all protons in a nucleus

In phase (Iso-Scalar)

• Out of phase (Iso-Vector)

Macroscopic & Microscopic Structure

Giant resonances (collective modes)
→ Width and Excitation energy
→ Coherent superposition of

1p-1h excitation

(Figure depicts IVGDR, obtained by gamma absorption in these nuclei)

Berman and Fultz, Rev. Mod. Phys. 47 (1975)

Nuclear Incompressibility

Incompressibility \rightarrow Measure of the resistance of

matter to uniform compression

$$K = -V \frac{\partial P}{\partial V}$$

Adapted from M. N. Harakeh

Nuclear Incompressibility

$$K_A = K_{vol} + K_{surf} A^{-1/3} + K_{\tau((N-Z)/A)^2} + K_{Coul} Z^2 A^{-4/3}$$

EoS is important for studying:

- Core collapse and explosion of supernovae
- Formation of neutron stars
- Collisions of heavy ions

Why Ni?

- Incompressibility value obtained for Pb isotopes 240 ±10 MeV Sn and Cd isotopes 210 – 215 MeV
- Question : Why Sn and Cd are softer than Pb?
- Need of study of incompressibility for a series of isotopes of a nucleus

56 28 28 55_{Ni} ⁵⁶Ni ⁵⁸Ni ⁵³Ni ⁵⁷Ni ⁵⁴Ni n stable 35.6 h 45 ms 104 ms 205 ms 6.08 d proton number р ⁵³Co ⁵²Co 54C 55Co ¥ ⁵⁶Co 115 ms 242 ms 17.53 h 193 ms 77 d α ⁵²Fe ⁵³Fe ⁵¹Fe ⁵⁴Fe stable **305 ms** 8.28 h 8.51 m β decay a decay 82 p emission 20 spontaneous fission 50 predicted magic number 20 neutron number

Angular Distribution of ISGMR and ISGDR

Differential cross-section in DWBA calculation for ⁵⁶Ni:

Primary Beam : ⁵⁸Ni at 75 MeV/u Fragmentation method : Target ⁹Be (thickness 500 µm) Secondary Beam : ⁵⁶Ni at 50 MeV/u

Challenges with exotic beams:

- Intensity of exotic beams is very low
- To get reasonable yields thick target is needed
- Very low energy (~ sub MeV) recoil particle will not come out of the target

Active target: Detection takes place at every point of the target

- Good angular coverage
- Effective target thickness can be increased without much loss of resolution
- Detection of very low energy recoil particle is also possible

Si/Csl Telescope in MAYA

Si/Csl Telescope in MAYA

Mask in MAYA

Kinematics curve for ⁵⁶Ni (α, α') ⁵⁶Ni* with ⁵⁶Ni at 50 MeV / u

Kinematics reconstruction in MAYA

Kinematics reconstruction in MAYA

ϕ angle reconstruction

Recoil Helium

Excitation energy of ⁵⁶Ni

Excitation energy of ⁵⁶Ni

Particle Identification in forward ∆E-E telescope

This analysis is carried out by Prof. H Akimune, Konan University,

Japan

Multiplicity of decay particles

The maximum $\frac{\text{multiplicity for } \alpha \text{ is } 7!}{\text{multiplicity for } \alpha \text{ is } 7!}$

Striking enhancement of α multiplicity strongly suggests existence of α cluster state in ⁵⁶Ni

Momentum distribution of $\boldsymbol{\alpha}$

Experiment

Sum of events with M>4

Simulation for kT= 5 MeV, including the efficiency of the detector

Sum of events with M>4

Summary and Outlook

- Compression modes in ⁵⁶Ni have been studied.
- MAYA active target at GANIL was used.
- Excitation energy of ⁵⁶Ni (ongoing analysis) is shown.
- Angular distributions of ISGMR and ISGDR of ⁵⁶Ni have to be obtained.
- Few results of α cluster state in ⁵⁶Ni (ongoing analysis) are shown.

GRAND ACCELERATEUR NATIONAL D'IONS LOURDS LABORATOIRE COMMUN DSW/CEA-IN2P3/CNRS

UNIVERSIDADE DE SANTIAGO DE COMPOSTELA

KATHOLIEKE UNIVERSITEIT

UNIVERSITY OF NOTRE DAME

OSAKA UNIVERSITY

Konan University

30

Kinematics curve for ⁵⁶Ni (α, α) ⁵⁶Ni with ⁵⁶Ni at 50 MeV / u

Energy [MeV / u]

LAB Angle [degree]

MAYA setup

Range extraction of recoil track

Phi angle reconstruction

Background Subtraction-SRIM Calculation

Particle identification

- number of p is the largest,
- however, as for the multiplicity, number of multi lpha is very large

LAB Angle [degree]

Momentum distribution of α

Experiment

Simulation for kT= 5 MeV, including the efficiency of the detector

Fz Px

$K_{A} = \left[r^{2} (d^{2} (E/A)/dr^{2}) \right]_{r=R_{0}}$ J.P. Blaizot, Phys. Rep. 64 (1980) 171 ISGMR, ISGDR \Rightarrow Incompressibility, symmetry energy

 $K_{A} = K_{vol} + K_{surf}A^{-1/3} + K_{sym}((N-Z)/A)^{2} + K_{Coul}Z^{2}A^{-4/3}$

Decay of giant resonances

- Width of resonance
 - $\Gamma, \Gamma^{\uparrow}, \Gamma^{\downarrow} (\Gamma^{\downarrow\uparrow}, \Gamma^{\downarrow\downarrow})$
 - Γ[†]: direct or escape width
 - Γ[↓]: spreading width
 - $\Gamma^{\downarrow\uparrow}$: pre-equilibrium, $\Gamma^{\downarrow\downarrow}$: compound
- Decay measurements
 - \Rightarrow Direct reflection of damping processes

Allows detailed comparison with theoretical calculations

 Γ^{\uparrow}

Microscopic picture:

GRs are coherent superposition of 1p-1h excitations induced by the single particle opeartors

- Excitation energy depends on:
 - > Multipole L (L $\hbar \omega$, since the radial operator $\propto r^{L}$; except for ISGMR and ISGDR, $2\hbar\omega$ and $3\hbar\omega$ respectively)
 - Strength of effective interaction

➤Collectivity

- Exhausts appreciable % of EWSR
- Acquires a width due to coupling to continuum and to the underlying 2p-2h.... configurations

Drift time measurement

Drift time measurement

$$\sigma(x,y) = \frac{-Q}{2\pi} \sum_{n=0}^{\infty} \frac{(2n+1)L}{[(2n+1)^2L^2 + x^2 + y^2]^{3/2}}$$

Fig. 9. Principle of the *Global Fitting method*. The orthogonal distance of the center of the pads to the straight line, weighted by their charge is minimized.

$$\chi^2 = \sum_{n=0}^{N} Q_n \frac{(a_0 x_n + a_1 - y_n)^2}{a_0^2 + 1}$$

Figure 1. 200 MeV inelastic α -scattering spectra for 208 Pb for $(0 \rightarrow 2)^{\circ}$ (upper panel) and the "difference" spectrum (lower panel). Simultaneous 2-peak + polynomial-background fits to the two spectra are shown superimposed.