

JRA 2 "ActILab"

T. Stora CERN (JRA02-ActLab Leader)

C Lau IPNO/CNRS

A. Andrigetto LNL/INFN

I Gunther PSI

H Franberg- Delahaye GANIL

1

Tasks

D-JRA02-1	Novel synthesis of actinide targets (Task 1: Synthesis of new actinide targets)	41 jan 2014
M-JRA02-1.1	Synthesis of actinide targets by sol-gel method - 'chimie douce'	38
M-JRA02-1.2	Synthesis of nanostructured actinide targets	38
D-JRA02-2	Characterization of new actinide targets (Task 2: Characterization of new actinide targets)	41 jan 2014
M-JRA02-2.1	Characterization of structures	38
M-JRA02-2.2	Characterization of thermal properties	38
D-JRA02-3	Characterization of irradiated targets in hot cell (Task 3:Actinide targets properties after irradiation)	46 jun2014
M-JRA02-3.1	Characterization of irradiated materials in hot cell	44
D-JRA02-4	Isotope release properties and modelling Task 4: Online Tests of Actinide Targets	46 jun2014
M-JRA02-4.1	Analysis of online tests of new actinide targets	44
M-JRA02-4.2	Effect of beam time structure on online tests	44

Actinide ISOL Target R&D Laboratory

Participants laboratory	Persons- months per participants	Budget k€
GANIL	8	38
LNL/INFN	20	72
ISOLDE/ CERN	21.5	113
IPNO/ CNRS	19	55
PSI	7	58
total	75.5	336

Task 1: Synthesis of new actinide targets

- ISOLDE/ CERN
- LNL/INFN
- IPNO/ CNRS

Task 2: Characterization of new actinides targets

- ISOLDE/CERN
- LNL/INFN

Task 3: Actinide target properties after irradiation

- ISOLDE/CERN
- PSI

Task 4: Online tests of Actinide Targets

- ISOLDE/CERN
- GANIL
- IPNO/CNRS

- D-JRA02-1: Novel synthesis of actinide targets
 - prototype month 41 (Feb 2014)
- D-JRA02-2 : Characterization of new actinide targets
 - report month 41 (Feb 2014)
- D-JRA02-3 : Characterization of irradiated materials in hot cell
 - report month 46 (Jun 2014)
- D-JRA02-4 : Isotope release properties and modelling
 - report month 46 (Jun 2014)

Contracts opened for ActiLab

- ISOLDE/CERN
 - Post-Doc 24 months
- PSI
 - Permanent staff (hot-cell laboratory and analysis group)
- LNL/INFN
 - Post-Doc 24 months
- GANIL
 - Post-doc 8 months

Meetings

- Kick off meeting 20 Jan 2011 (IPNO)
- 24 Nov 2011 (PSI)
- 24 mai 2012 (Italie)
- Jan 2013 (GANIL)
- Dec 2013 (LNL/INFN)

Experiments

- CERN
 - UCx HD target 2011
 - New UCx target developed at CERN Dec 2012
- PSI
 - Scheduled June 2013
- IPNO
 - March 2013
 - Scheduled Dec 2013

On-going activities..

ACTIVITIES IN EACH LABORATORY

- On-line tests of:
 - HD UCx targets
 - LD nano structure targets
- Synthesis of new actinide targets
- Characterization of targets before irradiation
- Characterization of targets after irradiation (at PSI)
 - Aging of the materials under irradiation

Alexander Gottberg, Thierry Stora

Upgrade of Ucx Laboratory at CERN

Dedicated target unit for characterizing the thermal evolution of the UC based material (sintering, degree of carbothermal reduction)

Two separated α -, β -, γ - fume cabinets for

- 1. production
- 2. development

High speed tungsten carbide ball-impact grinder with gas temperature and pressure control unit.

BET for measurement of open porosity and of grain size of pressed-powder pellets.

Dual wavelength laser particle size analyser for particle sizes between 1nm and 5mm.

ISOLDE HRS SCHEDULE 2012

Magdalena Kowalska V12_4.0, October 31, 2012

- Exchange of drawings, dummy samples with CERN
- Target selection (activities, dose rates)
- Discussion of extraction procedure and waste handling
- Transport organisation
- Transport of an irradiated target between CERN and PSI
- FIRST EVER
 DISMOUNTED
 IRRADIATED UC_X
 TARGET

- Dismantling of the target holder in the hot cells
- Transfer of the target container
- Design a storage container for the UC samples (inert gas conditions)

- Synthesis method of the Ucx targets
 - Optimization of the protocol to elaborate the pellets
- Characterization techniques
 - X-ray diffraction
 - Hydrostatic Weighting
 - He Pycnometer
 - Hg Porosimeter
 - BFT
 - SEM
- Carburization effects
- Release properties of the targets
 - On-line irradiations off-line measurements
- On-line experiment planned

S Tusseau-Nenez, C. Lau

Extension of the target laboratory

Temporary installation of equipment for synthesis and characterization

RELEASE MEASUREMENTS

Release properties of UCx samples: amount of fission products remaining after heating

Irradiation conditions:

- o Irradiation time: 20 min
- o Cooling time: 40 min

Heating conditions:

- o 1200°C or 1550°C during 1h
- Primary vacuum
- Cooling down to 70°C

 ⇒ avoid any pyrophoritic phenomenon in air, waiting time: 30 min

Installation of a new Ucx laboratory at LNL

UCx Laboratory

UC_x Vacuum Furnace (up to 2000 °C), to be moved to LNL

Decontamination room

Devices: glove box, fume hood, high vacuum furnace

Reduce and homogenize the grain size of oxide and carbon source → selection and control of the precursors

 Vibratory micromill and sieves purchased (grain size down to few μm) to treat small quantities of precursors

FLUKA simulations

- Low density powder (LD): 1.5 g/cm³
- High density powder (HD): 11 g/cm³
- Low density pellets (LDP): 3.5 g/cm³,
- High density pellets (HDP): 12 g/cm³,
- Participation in experiments
 - ISOLDE CERN Dec 2011
 - ISOLDE CERN Dec 2012
 - ALTO IPNO March 2013
- Analysis of the experiments
 - ISOLDE CERN Dec 2011
 - ISOLDE CERN Dec 2012
 - ALTO IPNO March 2013

Yield comparison after release from both targets Joanna Grinyer, Hanna Franberg-Delahaye, Pierre Delahaye

- For results please see the presentation of A. Gottberg
- •The collaboration continues see the presentation of C. Lau!

THANK YOU FOR YOUR ATTENTION