

TNA 07: ALTO

Tandem building Institut de Physique Nucléaire Campus of the Paris Sud University Orsay (France)

Tandem/ALTO general layout

Tandem+ISOL = 4000 h per year

Possibility to run in the future ISOL and Tandem simultaneously 28 engineers and technicians for Technical support

250 outside users (30 countries)/year

PAC: One/year

- R. F. CASTEN , Chair (Yale University)
- E. BALANZAT (CIMAP Caen)
- D. BALABANSKI (Sofia Bulgarie)
- S. GREVY (CENBG)
- E. KHAN (IPNO)
- W. KORTEN (SPhN-IRFU-CEA)
- B. RUBIO (IFIC Valencia)
- C. TRAUTMANN (GSI)
- A. TUMINO (LNS -Catania)
- J. C. THOMAS (GANIL)

Tandem+ISOL = 4000 h per year Possibility to run in the future ISOL and Tandem simultaneously 28 engineers and technicians for Technical support

250 outside users (30 countries)/year

ENSAR

ALTO: TNA within ENSAR and Candidate for TNA within ENSAR2

TNA	Number of beam hours promised -full contract	Number of beam hours 01/09/20 10 - 30/ 04/2013	Estimate d number of Users - full contract	Number of Users 01/09/2 010 - 30/ 04/2013	Estimate d number of days - full contract	Number of days 01/09/20 10 - 30/ 04/2013	Estimate d number of projects - full contract	Number of projects 01/09/20 10 - 30/ 04/2013	Total amount for T&S - full contract	Amount for T&S 01/09/20 10 - 30/ 04/2013
ALTO	1470	2400	116	80	556	576	19	19	73 720€	64 320€

TNA	Number of beam hours promised -full contract	Number of beam hours 01/09/20 10 - 30/ 04/2013	Estimate d number of Users - full contract	Number of Users 01/09/2 010 - 30/ 04/2013	Estimate d number of days - full contract	Number of days 01/09/20 10 - 30/ 04/2013	Estimate d number of projects - full contract	Number of projects 01/09/20 10 - 30/ 04/2013	Total amount for T&S - full contract	Amount for T&S 01/09/20 10 - 30/ 04/2013
ALTO	1470	2400	116	5 80	556	576	19) 19	73 720€	64 320€

March 2012

green light from French nuclear safety authorities

asp ^{Autorité} De sûreté Nucléaire

May 13th 2013 – formal inauguration

May 14-15th 2013 – 2nd Workshop on the Physics at ALTO

RIB developments at ALTO and contribution to R&D in ISOL science from ALTO

RIB developments and R&D in ISOL science **R&D program on the fluorination of Lanthanides**

70

Yb

6.25

819

1196

YbF, YbF₂, YbF₃

RIB developments and R&D in ISOL science R&D program on the fluorination of Lanthanides

I (nA)

I (nA)

CF4 inlet tube flow max compatible with good running conditions:~6 x 10⁻³ bar.l/s

Reliable T° control

RIB developments and R&D in ISOL science **R&D program on the fluorination of Lanthanides**

- 1st systematic study on the fluorination for Lanthanides beams
- Dependence on the valence of the Lanthanide
- Process sensitive to heating conditions
- Reproducible results
- No chemical corrosion observed in the front-end (after more than 3 weeks of operation)
- Further tests are scheduled for optimizing the operation conditions before going to online experiments

Towards a more general R&D program on molecular beams

IPN Chemists, engineers and physicists
N. Barré-Boscher, M. Cheikh
Mhamed, S. Essabaa, C. Lau,
B. Roussière, A. Said, S.
Tusseau-Nenez

- R&D of interest for all current ISOL facilities and extendable to develop new radioactive molecular beams.
- Powerful technique to produce chemically reactive nuclei.
- In the framework of ENSAR2: a proposal submitted, involving CERN, GANIL, GSI and INFN: to be discussed...

RIB developments and R&D in ISOL science UCx developments at IPN - ALTO

ENSAR JRA02, ActILab: Actinide ISOL Target R&D Laboratory

- CERN-ISOLDE
- GANIL-SPIRAL2
- INFN- SPES
- IPN- ALTO

• Laboratory of Chemical Sciences, Univ. of Rennes (France) for the synthesis of samples and microstructural characterizations (SEM)

ICMMO-Orsay

for SEM observations and XRD measurements on non-radioactive samples

IPN Chemists, engineers and physicists
N. Barré-Boscher, M. Cheikh
Mhamed, S. Essabaa, C. Lau,
B. Roussière, A. Said, S.
Tusseau-Nenez Objectives: Today : ALTO, 10¹¹ fissions / sec Tomorrow : SPIRAL2 >10¹³ fissions / sec Future : EURISOL, 10¹⁵ fissions / sec

Nowadays

The most widely used ISOL targets = **uranium carbide + graphite (UCX), mostly UC2** Concentration of ²³⁸U ~ **3 g/cm3** Operate at temperatures ranging from **2 000 °C to 2 200 °C**

How to increase the RIB intensities ?

Increasing the primary beam Increasing uranium density \rightarrow higher production rate of FPs

> BUT that cannot be the end of the story: favor the FPs releases, particularly crucial for the short-lived species

Controlling the porosity Reducing the thickness of pellets

UCx developments at IPN - ALTO

UCx developments at IPN - ALTO

Heating 1700°C during 30 min Secondary vacuum Cooling to 70°C in 10 min

Melting of Pt (T = 1630°C) to calibrate the emissivity of the pyrometer under pressure conditions (5.10⁻⁵ mbar). **The furnace for heating test** is home made. Calibration by melting of Pt

Results from gamma spectrometry

Laser ionized RIBs at ALTO

The ALTO laser ion source RIALTO (Resonant Ionization at ALTO)

Installation supervised by S. Franchoo with the collaboration of **ISOLDE**:

V. Fedosseev, B. Marsh, T. Goodacre **Univ. Manchester**:

K. Flanagan

Univ. Mainz:

T. Kron, K. Wendt

The on-line laser installation validated in 2011 with the production of Ga beams.

- 2012: Upgrade 2 new lasers (Radiant Dyes).
- 2013: Reference cell (in progress...)

Laser ionized RIBs at ALTO

Ga isotopes on-line delivery in 2011

Laser ionized RIBs at ALTO

Upgrades 2012 - 2013

- Validated with Ga beams: 287/297 nm + 532 nm
- Next run with Zn beams: 214 nm +
 636 nm + 532 nm (f tripling) –
 starting June 17th 2013
- Laser schemes and optics settled with the support of ISOLDE-CERN

Reference cell in progress...

Design: engineering office of the "Accelerators" Division of IPN Tests: R&D group of ALTO Collaboration with Mainz University: T. Kron and K. Wendt

R&D (TRIUMF-IPN MOU) = photo-production of 8Li in ISOL conditions

8Li photo-photoproduction collaboration at ALTO

P. Bricault, M. Lebois, TRIUMF, Vancouver, Canada

F. Ibrahim, D. Verney, S. Essabaa, E. Cottereau, Ch. Lau, M. Cheikh Mahmed and the source group *IPN, IN2P3/CNRS, Orsay, France*

photo-production of ⁸Li at ALTO : experimental setup

Photoproduction of ⁸Li: the results

photo-production of ⁶He at ALTO : experimental setup

Surface ionization

RESULTS OBTAINED WITH THE E-LINAC

Radioactive secondary lines

more than 10 years of experiments in the ⁷⁸Ni region at the PARRNe mass separator (Tandem/ALTO)

Progress in the instrumentation of the secondary beam lines BEDO : BEta Decay studies at Orsay

Progress in the instrumentation of the secondary beam lines BEDO : BEta Decay studies at Orsay

Direct β -delayed neutron emission measurement of ⁸⁴Ga with TETRA

Pn=70(15) K.-L.Kratz et al. Z.Phys. A340, 419 (1991) and B.Pfeiffer et al. Prog. Nucl. Energy 41, 39 (2002)

Pn=80(15) C.J.Gross et al. Acta Phys.Pol. B40, 447 (2009) Pn=47(10) J.A.Winger et al Proc.4th. Intern. Conf. Fission and Properties of Neutron-Rich Nuclei, Sanibel Island, Florida (2007); Pn=74(14) J.A.Winger PRC 81, 044303 (2010)

TETRA detector at **BEDO** setup:

- 4Pi neutron detector 90 counters ³He 7 atm [measured eff. 63±5% (on line)]

- 4π beta detector
- 1 Ge detector
- movable tape

ASTROPHYSICS WITH THE SPLIT POLE SPECTROMETER

SPLIT POLE SPECTROMETER

²⁷Al(n,p)²⁶Mg and ²⁷Al(n,α)²³Na in massive stars

Reaction: ²⁷Al(p,p')²⁷Al @ 18 MeV

- Targets: ²⁷Al, ¹²C & mylar ~ 80 μg/cm²
- Split-Pole: high-resolution measurement → θ = 10°, 25°, 40° & 45°
- ²⁷Al levels: kinematics displacement between Θ = 40° and 45°
- Many new states above (and below) neutron threshold
- Good agreement with known resonances

²⁷Al(n,p)²⁶Mg and ²⁷Al(n,α)²³Na in massive stars

Split-Pole position [a. u.]

500

n

1000

2000

Reaction: ²⁷Al(p,p')²⁷Al @ 18 MeV + coincidence measurement

- Split-Pole @ 40°
 - 3 DSSSDs in reaction chamber
 - \rightarrow 5 x 5 cm², 16 strips (W model)
 - \rightarrow backward angles
 - \rightarrow d ~ 10 cm, ϵ ~ 6%

SP - DSSSDs coupling successful

• I ~ 80 – 100 enA (!)

Very good beam tuning Low background environment for DSSSDs

3000

DSSSD energy [keV]

4000

Branching ratios

5000

6000

THE ORGAM ARRAY

The ORsay GAMma array

Performed experiment

The OUPS: the first campaigns

 $^{45}Sc(^{35}Cl,2p2n)^{76}Kr$, 126 MeV

- Well known lifetimes in yrast band
- Simple beam
- Simple target
- \bullet High cross section, $\gamma\gamma$
- Experiment 5 days with 7 Compton Supressed Phase-I detectors

Search for X(5) symmetry in ¹⁶⁸W nucleus. K. Gladnishki

- ¹⁶⁸W is a candidate for a X(5) nucleus
- To test this ratios of excitation energies and transition probabilities are used
- Higher precision of and/or new lifetime values needed

- 141 Pr $({}^{31}$ P,4n $\gamma)^{168}$ W
- ¹⁴¹Pr target on Ta backing (made at IKP Cologne)
- 13 Phase I HPGe mounted in Orgam
- Au gold stopper foil
- Short lifetimes γ-gated
 DDCM+DSAM

Search for X(5) symmetry in ¹⁶⁸W nucleus. K. Gladnishki

Yrast band of 168 W, gate $2^+ \rightarrow 0^+$ 2500 $4^+ \rightarrow 2^+$ 20 µm 150 µm 2000 $295\,\mu m$ $6^+ \rightarrow 4^+$ Counts/0.5 keV 1500 $8^+ \rightarrow 6^-$ 1000 500 0 350 400 450 500 550 γ-ray Energy [keV]

Progress in the instrumentation and future developments

Progress in the instrumentation of the secondary beam lines Nuclear orientation on line: the POLAREX project at ALTO

Physics at the right arm of the kicker-bender

Progress in the instrumentation of the secondary beam lines POLAREX

The detail of the shape of the angular distribution depends on the particular transition: **spins** of the nuclear states involved, **transition multipolarities**, and also on the environment of the nuclei like the **total magnetic field** and the **temperature**.

AND Nuclear Magnetic Resonance

The good frequency -> the magnetic moment Provided the magnetic field and the temperature are known

- Hyperfine information
- Nuclear thermometer

Possible and/or interesting measurements at ALTO

Progress in the instrumentation of the secondary beam lines **POLAREX**

POLAREX

Progress in the instrumentation of the secondary beam lines POLAREX

PolarEx

Rejuvenation of the dilution cryostat Thermometry Electronics Acquisition control

- letters of intent received
- OFF line measurements at CSNSM $\sqrt{}$
- OFF line measurements at ALTO
- ON line measurements at ALTO ×

Preparation on the ALTO site Structure and platforms Faisceaulogie and beam line des gn

Collaboration

• CSNSM Orsay:

A. Astier, G. Audi, S. Cabaret, A. Etilé, C. Gaulard, G. Georgiev, S. Roccia

- LPSC Grenoble:
- G. Simpson
- IPN Orsay:
- F. Ibrahim, D. Verney
- *INM* :
- L. Risegari
- University of Tennessee, University of Oxford
- N.J. Stone
- University of
- *Maryland*, University of Oxford J.R. Stone
- University of Novi Sad :

M. Veskovic J. Nikolov

Progress in the instrumentation of the secondary beam lines TAS: **Total Absorption Spectroscopy program**

Physics at the right arm of the kicker-bender

Progress in the instrumentation of the secondary beam lines TAS: **Total Absorption Spectroscopy program**

The TAS Collaboration

J. Agramunt¹, A. Algora¹, J. Äystö⁴, V.M. Bui², D. Cano-Ott⁵, C. Domingo-Pardo¹, V. Eloma⁴, E. Estévez¹, T. Eronen⁴, M. Fallot², W. Gelletly³, G. Giubrone¹, J. Hakala⁴, A. Jokinen⁴, M.D. Jordan¹, A. Kankainen⁴, E. Mendoza⁵, F. Molina¹, I. Moore⁴, S.E.A. Orrigo¹, A. Pérez¹, Zs. Podolyák³, H. Penttilä⁴, A.Porta², P. H. Regan³, S. Rice³, J. Rissanen⁴, B. Rubio¹, J.L. Taín¹, E. Valencia¹, C. Weber⁴, A. Zakari² + IGISOL people 1 IFIC, CSIC-Univ. Valencia, Valencia, Spain 2 Subatech, CNRS/IN2P3, Univ. Nantes, EMN, Nantes, France 3 Univ. Surrey, Guilford, UK 4 IGISOL, Univ. Jyväskylä, Finland 5 Ciemat- Madrid, Spain

Progress in the instrumentation of the secondary beam lines TAS: Total Absorption Spectroscopy program

TAS Technique

Pandemonium effect**:

Courtesy M. Fallot Due to the use of Ge detectors to measure the decay schemes: lower efficiency at higher energy

 \rightarrow underestimate of β branches towards high energy excited states: overestimate of the high energy part of the FP β spectra

Picture from A. Algora

** J.C.Hardy et al., Phys. Lett. B, 71, 307 (1977)

TAGS developed by the Valencia team (Spain, B. Rubio, J.L. Tain, A. Algora et al.) : Proceedings of the Int. Conf. For nuclear Data for Science and technology (ND2013)

Solution: Total Absorption Spectroscopy (TAS) Big cristal, $4\pi => A TAS$ is a calorimeter !

• 12 BaF₂ covering $\sim 4\pi$ • Detection efficiency of y ray cascade ~ 100% Si detector for β

LICORNE 2013: COLLABORATION IPNO/IRMM

50

The LICORNE Project: Neutron production at the ALTO facility

<u>M. Lebois</u> and J.N. Wilson and, P. Halipré, B. Leniau IPN, Orsay, France

> S. Oberstedt IRMM, Geel, Belgium

Uppsala University, Sweden Chalmers University, Gothenburg Sweden University of York, UK University o Manchester, UK Lawrence Livermoore Laboratory, USA

TNA	Number of beam hours promised -full contract	Number of beam hours 01/09/20 10 - 30/ 04/2013	Estimate d number of Users - full contract	Number of Users 01/09/2 010 - 30/ 04/2013	Estimate d number of days - full contract	Number of days 01/09/20 10 - 30/ 04/2013	Estimate d number of projects - full contract	Number of projects 01/09/20 10 - 30/ 04/2013	Total amount for T&S - full contract	Amount for T&S 01/09/20 10 - 30/ 04/2013
ALTO	1470	2400	116	80	556	576	19	19	73 720€	64 320€

Accélérateur Linéaire et Tandem à Orsay

۳.

0

90 D